Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Nov;396(11):1199-213.
doi: 10.1515/hsz-2015-0170.

Biogenesis of mitochondrial outer membrane proteins, problems and diseases

Review

Biogenesis of mitochondrial outer membrane proteins, problems and diseases

Lars Ellenrieder et al. Biol Chem. 2015 Nov.

Abstract

Proteins of the mitochondrial outer membrane are synthesized as precursors on cytosolic ribosomes and sorted via internal targeting sequences to mitochondria. Two different types of integral outer membrane proteins exist: proteins with a transmembrane β-barrel and proteins embedded by a single or multiple α-helices. The import pathways of these two types of membrane proteins differ fundamentally. Precursors of β-barrel proteins are first imported across the outer membrane via the translocase of the outer membrane (TOM complex). The TOM complex is coupled to the sorting and assembly machinery (SAM complex), which catalyzes folding and membrane insertion of these precursors. The mitochondrial import machinery (MIM complex) promotes import of proteins with multiple α-helical membrane spans. Depending on the topology precursors of proteins with a single α-helical membrane anchor are imported via several distinct routes. We summarize current models and open questions of biogenesis of mitochondrial outer membrane proteins and discuss the impact of malfunctions of protein sorting on the development of diseases.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources