Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989;71(2-3):265-78.
doi: 10.1016/0009-2797(89)90040-9.

In vitro and in vivo modulation of the bioactivation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in hamster lung tissues

Affiliations

In vitro and in vivo modulation of the bioactivation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in hamster lung tissues

M Charest et al. Chem Biol Interact. 1989.

Abstract

The metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) by hamster lung explants was studied. The three major metabolic pathways were alpha-C-hydroxylation (activation), pyridine N-oxidation (deactivation) and carbonyl reduction. alpha-C-Hydroxylation and pyridine N-oxidation were linear with time (0.5-5 h) and number of explants per dish (3-10). Addition of [2-(diethylamino)ethyl 2,2-diphenylpentenoate] hydrochloride (SKF-525A) to the culture medium reduced alpha-C-hydroxylation and pyridine N-oxidation. alpha-C-Hydroxylation was enhanced by treatment of the hamsters with the two cytochrome P-450 inducers, phenobarbital and 3-methylcholanthrene. These results suggest that cytochrome P-450 monooxygenases are involved in the activation of NNK by alpha-C-hydroxylation. Three groups of hamsters were fed a control diet or diet supplemented with 2% 2(3)-tert-butyl 4-hydroxyanisole (2(3)-BHA) or given a 0.002% solution of (S)-nicotine to drink for two weeks. Lung explants were then cultured with NNK in vitro. Treatment with 2(3)-BHA and (S)-nicotine induced the alpha-C-hydroxylation pathways. Pyridine N-oxidation was increased by (S)-nicotine treatment. These results indicate that dietary factors and tobacco smoke components can modulate the metabolism of NNK.

PubMed Disclaimer

Publication types

LinkOut - more resources