Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jul;97(1):69-79.
doi: 10.1007/s00223-015-0013-6. Epub 2015 May 19.

Biphasic Effects of Vitamin D and FGF23 on Human Osteoclast Biology

Affiliations

Biphasic Effects of Vitamin D and FGF23 on Human Osteoclast Biology

Lise Allard et al. Calcif Tissue Int. 2015 Jul.

Abstract

Vitamin D and FGF23 play a major role in calcium/phosphate balance. Vitamin D may control bone resorption but the potential role of FGF23 has never been evaluated. The objective of this study was therefore to compare the effects of vitamin D and FGF23 on osteoclast differentiation and activity in human monocyte-derived osteoclasts. Human monocytes, purified from blood of healthy donors, were incubated with M-CSF and RANKL to obtain mature multinucleated osteoclasts (MNC). Experiments were carried out to assess the effects of FGF23 as compared to native vitamin D (25-D) and active vitamin D (1,25-D) on osteoclast differentiation and on bone-resorbing osteoclast activity. Additional experiments with the pan fibroblast growth factor receptor inhibitor (FGFR-i) were performed. Phosphorylation Akt and Erk pathways were analyzed by Western blot analyses. Both 1,25-D and FGF23, to a lesser extent, significantly inhibited osteoclastogenesis at early stages; when adding FGFR-i, osteoclast formation was restored. Biochemical experiments showed an activation of the Akt and Erk pathways under FGF23 treatment. In contrast, in terms of activity, 1,25-D had no effect on resorption, whereas FGF23 slightly but significantly increased bone resorption; 25-D had no effects on either differentiation or on activity. These data show that 1,25-D inhibits osteoclastogenesis without regulating osteoclast-mediated bone resorption activity; FGF23 has biphasic effects on osteoclast physiology, inhibiting osteoclast formation while stimulating slightly osteoclast activity. These results may be of importance and taken into account in chronic kidney disease when therapies modulating FGF23 are available.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources