Software for the analysis and visualization of deep mutational scanning data
- PMID: 25990960
- PMCID: PMC4491876
- DOI: 10.1186/s12859-015-0590-4
Software for the analysis and visualization of deep mutational scanning data
Abstract
Background: Deep mutational scanning is a technique to estimate the impacts of mutations on a gene by using deep sequencing to count mutations in a library of variants before and after imposing a functional selection. The impacts of mutations must be inferred from changes in their counts after selection.
Results: I describe a software package, dms_tools, to infer the impacts of mutations from deep mutational scanning data using a likelihood-based treatment of the mutation counts. I show that dms_tools yields more accurate inferences on simulated data than simply calculating ratios of counts pre- and post-selection. Using dms_tools, one can infer the preference of each site for each amino acid given a single selection pressure, or assess the extent to which these preferences change under different selection pressures. The preferences and their changes can be intuitively visualized with sequence-logo-style plots created using an extension to weblogo.
Conclusions: dms_tools implements a statistically principled approach for the analysis and subsequent visualization of deep mutational scanning data.
Figures
.
.
.
.
.References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
