Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jun 19;80(12):6432-40.
doi: 10.1021/acs.joc.5b00863. Epub 2015 Jun 2.

Mn-Mediated Radical-Ionic Annulations of Chiral N-Acylhydrazones

Affiliations

Mn-Mediated Radical-Ionic Annulations of Chiral N-Acylhydrazones

Kara A Slater et al. J Org Chem. .

Abstract

Sequencing a free radical addition and nucleophilic substitution enables [3 + 2] and [4 + 2] annulations of N-acylhydrazones to afford substituted pyrrolidines and piperidines. Photolysis of alkyl iodides in the presence of Mn2(CO)10 leads to chemoselective iodine atom abstraction and radical addition to N-acylhydrazones without affecting alkyl chloride functionality. Using radical precursors or acceptors bearing a suitably positioned alkyl chloride, the radical addition is followed by further bond construction enabled by radical-polar crossover. After the alkyl radical adds to the imine bond, the resulting N-nucleophile displaces the alkyl chloride leaving group via 5-exo-tet or 6-exo-tet cyclizations, furnishing either pyrrolidine or piperidine, respectively. When both 5-exo-tet and 6-exo-tet pathways are available, the 5-exo-tet cyclization is preferred. Isolation of the intermediate radical adduct, still bearing the alkyl chloride functionality, confirms the order of events in this radical-polar crossover annulation. A chiral oxazolidinone stereocontrol element in the N-acylhydrazones provides excellent stereocontrol in these reactions.

PubMed Disclaimer

LinkOut - more resources