Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 May 19;9(5):e0003765.
doi: 10.1371/journal.pntd.0003765. eCollection 2015 May.

Multiplex Real-Time PCR Assay Using TaqMan Probes for the Identification of Trypanosoma cruzi DTUs in Biological and Clinical Samples

Affiliations

Multiplex Real-Time PCR Assay Using TaqMan Probes for the Identification of Trypanosoma cruzi DTUs in Biological and Clinical Samples

Carolina I Cura et al. PLoS Negl Trop Dis. .

Abstract

Background: Trypanosoma cruzi has been classified into six Discrete Typing Units (DTUs), designated as TcI-TcVI. In order to effectively use this standardized nomenclature, a reproducible genotyping strategy is imperative. Several typing schemes have been developed with variable levels of complexity, selectivity and analytical sensitivity. Most of them can be only applied to cultured stocks. In this context, we aimed to develop a multiplex Real-Time PCR method to identify the six T. cruzi DTUs using TaqMan probes (MTq-PCR).

Methods/principal findings: The MTq-PCR has been evaluated in 39 cultured stocks and 307 biological samples from vectors, reservoirs and patients from different geographical regions and transmission cycles in comparison with a multi-locus conventional PCR algorithm. The MTq-PCR was inclusive for laboratory stocks and natural isolates and sensitive for direct typing of different biological samples from vectors, reservoirs and patients with acute, congenital infection or Chagas reactivation. The first round SL-IR MTq-PCR detected 1 fg DNA/reaction tube of TcI, TcII and TcIII and 1 pg DNA/reaction tube of TcIV, TcV and TcVI reference strains. The MTq-PCR was able to characterize DTUs in 83% of triatomine and 96% of reservoir samples that had been typed by conventional PCR methods. Regarding clinical samples, 100% of those derived from acute infected patients, 62.5% from congenitally infected children and 50% from patients with clinical reactivation could be genotyped. Sensitivity for direct typing of blood samples from chronic Chagas disease patients (32.8% from asymptomatic and 22.2% from symptomatic patients) and mixed infections was lower than that of the conventional PCR algorithm.

Conclusions/significance: Typing is resolved after a single or a second round of Real-Time PCR, depending on the DTU. This format reduces carryover contamination and is amenable to quantification, automation and kit production.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Multiplex real-time PCR flowchart for identification of Trypanosoma cruzi DTUs in biological samples.
SL-IR, spliced leader intergenic region; 18S, 18S-ribosomal ADN; COII, cytochrome oxidase II; 24Sα, 24Sα-ribosomal DNA; MTq, multiplex TaqMan Real-Time PCR.
Fig 2
Fig 2. Linear range and analytical sensitivity of the first round SL-IR MTq PCR for T. cruzi DTUs and TcI SL-IR genotypes.
X-axis represents serial dilutions of whole genomic DNA from each stock and Y-axis represents the obtained Ct value. Linear regression analysis, equation and R2 are shown for each graph. Inserts inside plots represent the Ct values obtained for the complete DNA concentration range tested (1 fg—10 ng/ reaction tube). TcIa, strain K98; TcIb, strain Cas16; TcId, strain G; TcIe, strain PALV1 cl1; TcII, strain Tu18; TcIII, strain M5631; TcIV, strain CanIII; TcV, strain PAH265; and TcVI, strain CL Brener.
Fig 3
Fig 3. Linear range and analytical sensitivity of the second round multiplex real-time PCR tests.
A. 18S-COII MTq PCR assay for reference stocks representing T. cruzi DTUs TcII, TcV and TcVI. Detection of TcII stock is shown for both TaqMan probes 18S-FAM and COII-Cy5. B. 24Sα MTq PCR for reference stocks representing T. cruzi DTUs TcIII, TcIV-SA and TcIV-NA. X-axis represents serial dilutions of whole genomic DNA from each stock and Y-axis represents the obtained Ct value. Linear regression analysis, equation and R2 are shown for each graph. TcII, strain Tu18; TcV, strain PAH265; TcVI, strain CL Brener; TcIII, strain M5631; TcIV-SA (TcIV from South America), strain CanIII; TcIV-NA (TcIV from North America), strain Griffin.

References

    1. Barnabé C, Brisse S, Tibayrenc M. Population structure and genetic typing of Trypanosoma cruzi, the agent of Chagas disease: a multilocus enzyme electrophoresis approach. Parasitology. 2000; 120(5): 513–526. - PubMed
    1. Brisse S, Dujardin JC, Tibayrenc M. Identification of six Trypanosoma cruzi lineages by sequence-characterised amplified region markers. Mol Biochem Parasitol. 2000; 111(1): 95–105. - PubMed
    1. Lewis MD, Llewellyn MS, Gaunt MW, Yeo M, Carrasco HJ, Miles MA. Flow cytometric analysis and microsatellite genotyping reveal extensive DNA content variation in Trypanosoma cruzi populations and expose contrasts between natural and experimental hybrids. Int J Parasitol. 2009; 39(12): 1305–1317. 10.1016/j.ijpara.2009.04.001 - DOI - PMC - PubMed
    1. Miles MA, Cibulskis RE. Zymodeme characterization of Trypanosoma cruzi . Parasitol Today. 1986; 2(4): 94–97. - PubMed
    1. Tibayrenc M, Ayala FJ. Isozyme variability in Trypanosoma cruzi, the agent of Chagas-disease—genetic, taxonomical, and epidemiological significance. Evolution. 1988; 42(2): 277–292. - PubMed

Publication types