Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Aug;89(8):1193-207.
doi: 10.1007/s00204-015-1523-8. Epub 2015 May 21.

Dispelling dogma and misconceptions regarding the most pharmacologically targetable source of reactive species in inflammatory disease, xanthine oxidoreductase

Affiliations
Review

Dispelling dogma and misconceptions regarding the most pharmacologically targetable source of reactive species in inflammatory disease, xanthine oxidoreductase

Eric E Kelley. Arch Toxicol. 2015 Aug.

Abstract

Xanthine oxidoreductase (XOR), the molybdoflavin enzyme responsible for the terminal steps of purine degradation in humans, is also recognized as a significant source of reactive species contributory to inflammatory disease. In animal models and clinical studies, inhibition of XOR has resulted in diminution of symptoms and enhancement of function in a number of pathologies including heart failure, diabetes, sickle cell anemia, hypertension and ischemia-reperfusion injury. For decades, XOR involvement in pathologic processes has been established by salutary outcomes attained from treatment with the XOR inhibitor allopurinol. This has served to frame a working dogma that elevation of XOR-specific activity is associated with enhanced rates of reactive species generation that mediate negative outcomes. While adherence to this narrowly focused practice of designating elevated XOR activity to be "bad" has produced some benefit, it has also led to significant underdevelopment of the processes mediating XOR regulation, identification of alternative reactants and products as well as micro-environmental factors that alter enzymatic activity. This is exemplified by recent reports: (1) identifying XOR as a nitrite reductase and thus a source of beneficial nitric oxide ((•)NO) under in vivo conditions similar to those where XOR inhibition has been assumed an optimal treatment choice, (2) describing XOR-derived uric acid (UA) as a critical pro-inflammatory mediator in vascular and metabolic disease and (3) ascribing an antioxidant/protective role for XOR-derived UA. When taken together, these proposed and countervailing functions of XOR affirm the need for a more comprehensive evaluation of product formation as well as the factors that govern product identity. As such, this review will critically evaluate XOR-catalyzed oxidant, (•)NO and UA formation as well as identify factors that mediate their production, inhibition and the resultant impact on inflammatory disease.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources