Triggering actin polymerization in Xenopus egg extracts from phosphoinositide-containing lipid bilayers
- PMID: 25997346
- DOI: 10.1016/bs.mcb.2015.01.020
Triggering actin polymerization in Xenopus egg extracts from phosphoinositide-containing lipid bilayers
Abstract
Xenopus egg extracts are a powerful tool to reconstitute complex cell biological processes using a cell-free strategy. When used in conjunction with liposomes and supported lipid bilayers, they can recapitulate the biochemical activities occurring at the cytosol/plasma membrane interface of the cell that underlie remodeling of the actin cytoskeleton. We use these in vitro systems to elucidate how membranes and proteins collaborate to make the appropriate actin structure at a given time and place. We have recently broadened the types of membrane substrate used, and also optimized protocols for preparation of Xenopus egg extracts for actin assembly assays from membranes. Tuning the lipid composition and curvature appropriately demands an appreciation of the native phospholipid and curvature environments that can form transiently in cells. Supported lipid bilayers on glass coverslips that contain phosphatidylserine and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) make actin bundles termed filopodia-like structures that contain fascin and have vasodilator-stimulated phosphoprotein (VASP) at their growing tips, indicating that these resemble filopodia growing from the plasma membrane. The combination of PI(4,5)P2 and phosphatidylinositol 3-phosphate in curved liposomes or supported bilayers on glass nanospheres uses Snx9, Cdc42, N-WASP (neuronal-Wiskott-Aldrich syndrome protein), and Arp2/3 complex for actin polymerization suggesting that this membrane may mimic the progression from plasma membrane to endosomes. Here we describe how to prepare high-speed supernatant frog egg extracts and phosphoinositide-containing liposomes and supported lipid bilayers that can assemble actin structures. We also describe the methods we use to assay actin polymerization using microscopy and spectrofluorometry and our protocol for immunodepleting specific proteins from extracts.
Keywords: Arp2/3 complex; Cdc42; Curvature; Cytoskeleton; Filopodia; Membrane; Microscopy; N-WASP; PI(4,5)P(2); Reconstitution.
Copyright © 2015 Elsevier Inc. All rights reserved.
Similar articles
-
Phosphoinositides and membrane curvature switch the mode of actin polymerization via selective recruitment of toca-1 and Snx9.Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7193-8. doi: 10.1073/pnas.1305286110. Epub 2013 Apr 15. Proc Natl Acad Sci U S A. 2013. PMID: 23589871 Free PMC article.
-
Self-assembly of filopodia-like structures on supported lipid bilayers.Science. 2010 Sep 10;329(5997):1341-5. doi: 10.1126/science.1191710. Science. 2010. PMID: 20829485 Free PMC article.
-
Membrane composition and curvature in SNX9-mediated actin polymerization.Mol Biol Cell. 2025 May 1;36(5):ar54. doi: 10.1091/mbc.E24-09-0419. Epub 2025 Mar 19. Mol Biol Cell. 2025. PMID: 40105919
-
Regulation of the actin cytoskeleton by PI(4,5)P2 and PI(3,4,5)P3.Curr Top Microbiol Immunol. 2004;282:117-63. doi: 10.1007/978-3-642-18805-3_5. Curr Top Microbiol Immunol. 2004. PMID: 14594216 Review.
-
Regulation of actin assembly by PI(4,5)P2 and other inositol phospholipids: An update on possible mechanisms.Biochem Biophys Res Commun. 2018 Nov 25;506(2):307-314. doi: 10.1016/j.bbrc.2018.07.155. Epub 2018 Aug 13. Biochem Biophys Res Commun. 2018. PMID: 30139519 Free PMC article. Review.
Cited by
-
Donepezil Nanoemulsion Induces a Torpor-like State with Reduced Toxicity in Nonhibernating Xenopus laevis Tadpoles.ACS Nano. 2024 Sep 3;18(35):23991-24003. doi: 10.1021/acsnano.4c02012. Epub 2024 Aug 21. ACS Nano. 2024. PMID: 39167921 Free PMC article.
-
Control of actin polymerization via the coincidence of phosphoinositides and high membrane curvature.J Cell Biol. 2017 Nov 6;216(11):3745-3765. doi: 10.1083/jcb.201704061. Epub 2017 Sep 18. J Cell Biol. 2017. PMID: 28923975 Free PMC article.
-
Stochastic combinations of actin regulatory proteins are sufficient to drive filopodia formation.J Cell Biol. 2021 Apr 5;220(4):e202003052. doi: 10.1083/jcb.202003052. J Cell Biol. 2021. PMID: 33740033 Free PMC article.
-
Filopodial protrusion driven by density-dependent Ena-TOCA-1 interactions.J Cell Sci. 2024 Mar 15;137(6):jcs261057. doi: 10.1242/jcs.261057. Epub 2024 Mar 21. J Cell Sci. 2024. PMID: 38323924 Free PMC article.
-
Adding SNX to the mix: SNX9 drives filopodia biogenesis.J Cell Biol. 2020 Apr 6;219(4):e202002086. doi: 10.1083/jcb.202002086. J Cell Biol. 2020. PMID: 32328644 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous