Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Jul 2:205:1-6.
doi: 10.1016/j.virusres.2015.05.006. Epub 2015 May 18.

Bats as reservoirs of severe emerging infectious diseases

Affiliations
Review

Bats as reservoirs of severe emerging infectious diseases

Hui-Ju Han et al. Virus Res. .

Abstract

In recent years severe infectious diseases have been constantly emerging, causing panic in the world. Now we know that many of these terrible diseases are caused by viruses originated from bats (Table 1), such as Ebola virus, Marburg, SARS coronavirus (SARS-CoV), MERS coronavirus (MERS-CoV), Nipah virus (NiV) and Hendra virus (HeV). These viruses have co-evolved with bats due to bats' special social, biological and immunological features. Although bats are not in close contact with humans, spillover of viruses from bats to intermediate animal hosts, such as horses, pigs, civets, or non-human primates, is thought to be the most likely mode to cause human infection. Humans may also become infected with viruses through aerosol by intruding into bat roosting caves or via direct contact with bats, such as catching bats or been bitten by bats.

Keywords: Bat; Ebola; Emerging infectious diseases; Hendra; MERS; Natural reservoir; Nipah; SARS; Viruses.

PubMed Disclaimer

References

    1. AbuBakar S., Chang L.Y., Ali A.R., Sharifah S.H., Yusoff K., Zamrod Z. Isolation and molecular identification of Nipah virus from pigs. Emerg. Infect. Dis. 2004;10(12):2228–2230. - PMC - PubMed
    1. Adjemian J., Farnon E.C., Tschioko F., Wamala J.F., Byaruhanga E., Bwire G.S., Kansiime E., Kagirita A., Ahimbisibwe S., Katunguka F., Jeffs B., Lutwama J.J., Downing R., Tappero J.W., Formenty P., Amman B., Manning C., Towner J., Nichol S.T., Rollin P.E. Outbreak of Marburg hemorrhagic fever among miners in Kamwenge and Ibanda Districts, Uganda, 2007. J. Infect. Dis. 2011;204(Suppl. 3):S796–S799. (1537–6613 (Electronic)) - PMC - PubMed
    1. Alves D.A., Glynn A.R., Steele K.E., Lackemeyer M.G., Garza N.L., Buck J.G., Mech C., Reed D.S. Aerosol exposure to the angola strain of marburg virus causes lethal viral hemorrhagic fever in cynomolgus macaques. Vet. Pathol. 2010;47(5):831–851. - PubMed
    1. Annan A., Baldwin H.J., Corman V.M., Klose S.M., Owusu M., Nkrumah E.E., Badu E.K., Anti P., Agbenyega O., Meyer B., Oppong S., Sarkodie Y.A., Kalko E.K., Lina P.H., Godlevska E.V., Reusken C., Seebens A., Gloza-Rausch F., Vallo P., Tschapka M., Drosten C., Drexler J.F. Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe. Emerg. Infect. Dis. 2013;19(3):456–459. - PMC - PubMed
    1. Azhar E.I., El-Kafrawy S.A., Farraj S.A., Hassan A.M., Al-Saeed M.S., Hashem A.M., Madani T.A. Evidence for camel-to-human transmission of MERS coronavirus. N. Engl. J. Med. 2014;370(26):2499–2505. - PubMed

Publication types

MeSH terms