Modeling neural activity with cumulative damage distributions
- PMID: 25998210
- DOI: 10.1007/s00422-015-0651-9
Modeling neural activity with cumulative damage distributions
Abstract
Neurons transmit information as action potentials or spikes. Due to the inherent randomness of the inter-spike intervals (ISIs), probabilistic models are often used for their description. Cumulative damage (CD) distributions are a family of probabilistic models that has been widely considered for describing time-related cumulative processes. This family allows us to consider certain deterministic principles for modeling ISIs from a probabilistic viewpoint and to link its parameters to values with biological interpretation. The CD family includes the Birnbaum-Saunders and inverse Gaussian distributions, which possess distinctive properties and theoretical arguments useful for ISI description. We expand the use of CD distributions to the modeling of neural spiking behavior, mainly by testing the suitability of the Birnbaum-Saunders distribution, which has not been studied in the setting of neural activity. We validate this expansion with original experimental and simulated electrophysiological data.
Keywords: Birnbaum–Saunders and inverse Gaussian distributions; Integrate-and-fire model; Inter-spike intervals; Maximum likelihood method; Model selection and goodness of fit.
Similar articles
-
The membrane potential process of a single neuron seen as a cumulative damage process.Cogn Neurodyn. 2016 Dec;10(6):593-595. doi: 10.1007/s11571-016-9400-6. Epub 2016 Jul 22. Cogn Neurodyn. 2016. PMID: 27891205 Free PMC article.
-
Discrimination with Spike Times and ISI Distributions.Neural Comput. 2008 Jun;20(6):1411-26. doi: 10.1162/neco.2007.07-07-561. Neural Comput. 2008. PMID: 18194107
-
Modeling neural activity using the generalized inverse Gaussian distribution.Biol Cybern. 1997 Oct;77(4):289-95. doi: 10.1007/s004220050390. Biol Cybern. 1997. PMID: 9394447
-
A unified description of cerebellar inter-spike interval distributions and variabilities using summation of Gaussians.Network. 2011;22(1-4):74-96. doi: 10.3109/0954898X.2011.636860. Network. 2011. PMID: 22149670 Review.
-
Neuronal coding and spiking randomness.Eur J Neurosci. 2007 Nov;26(10):2693-701. doi: 10.1111/j.1460-9568.2007.05880.x. Eur J Neurosci. 2007. PMID: 18001270 Review.
Cited by
-
Generalised exponential-Gaussian distribution: a method for neural reaction time analysis.Cogn Neurodyn. 2023 Feb;17(1):221-237. doi: 10.1007/s11571-022-09813-2. Epub 2022 May 17. Cogn Neurodyn. 2023. PMID: 36704631 Free PMC article.
-
Fatigue-life distributions for reaction time data.Cogn Neurodyn. 2018 Jun;12(3):351-356. doi: 10.1007/s11571-017-9473-x. Epub 2018 Jan 10. Cogn Neurodyn. 2018. PMID: 29765482 Free PMC article.
-
A New Mixture Model With Cure Rate Applied to Breast Cancer Data.Biom J. 2024 Sep;66(6):e202300257. doi: 10.1002/bimj.202300257. Biom J. 2024. PMID: 39104134 Free PMC article.
-
Toward the Bayesian brain: a generative model of information transmission by vestibular sensory neurons.Front Neurol. 2024 Dec 18;15:1465211. doi: 10.3389/fneur.2024.1465211. eCollection 2024. Front Neurol. 2024. PMID: 39744113 Free PMC article.
-
The membrane potential process of a single neuron seen as a cumulative damage process.Cogn Neurodyn. 2016 Dec;10(6):593-595. doi: 10.1007/s11571-016-9400-6. Epub 2016 Jul 22. Cogn Neurodyn. 2016. PMID: 27891205 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources