Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Jun 25;125(26):3988-95.
doi: 10.1182/blood-2014-12-580001. Epub 2015 May 21.

Inherited genetic variation in childhood acute lymphoblastic leukemia

Affiliations
Review

Inherited genetic variation in childhood acute lymphoblastic leukemia

Takaya Moriyama et al. Blood. .

Abstract

Although somatically acquired genomic alterations have long been recognized as the hallmarks of acute lymphoblastic leukemia (ALL), the last decade has shown that inherited genetic variations (germline) are important determinants of interpatient variability in ALL susceptibility, drug response, and toxicities of ALL therapy. In particular, unbiased genome-wide association studies have identified germline variants strongly associated with the predisposition to ALL in children, providing novel insight into the mechanisms of leukemogenesis and evidence for complex interactions between inherited and acquired genetic variations in ALL. Similar genome-wide approaches have also discovered novel germline genetic risk factors that independently influence ALL prognosis and those that strongly modify host susceptibility to adverse effects of antileukemic agents (eg, vincristine, asparaginase, glucocorticoids). There are examples of germline genomic associations that warrant routine clinical use in the treatment of childhood ALL (eg, TPMT and mercaptopurine dosing), but most have not reached this level of actionability. Future studies are needed to integrate both somatic and germline variants to predict risk of relapse and host toxicities, with the eventual goal of implementing genetics-driven precision-medicine approaches in ALL treatment.

PubMed Disclaimer

References

    1. Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. Lancet. 2013;381(9881):1943–1955. - PMC - PubMed
    1. Pui CH, Carroll WL, Meshinchi S, Arceci RJ. Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol. 2011;29(5):551–565. - PMC - PubMed
    1. Mullighan CG, Goorha S, Radtke I, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446(7137):758–764. - PubMed
    1. Mullighan CG, Su X, Zhang J, et al. Children’s Oncology Group. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360(5):470–480. - PMC - PubMed
    1. Moorman AV, Enshaei A, Schwab C, et al. A novel integrated cytogenetic and genomic classification refines risk stratification in pediatric acute lymphoblastic leukemia. Blood. 2014;124(9):1434–1444. - PubMed

Publication types

MeSH terms