The autophagy gene Wdr45/Wipi4 regulates learning and memory function and axonal homeostasis
- PMID: 26000824
- PMCID: PMC4502681
- DOI: 10.1080/15548627.2015.1047127
The autophagy gene Wdr45/Wipi4 regulates learning and memory function and axonal homeostasis
Abstract
WDR45/WIPI4, encoding a WD40 repeat-containing PtdIns(3)P binding protein, is essential for the basal autophagy pathway. Mutations in WDR45 cause the neurodegenerative disease β-propeller protein-associated neurodegeneration (BPAN), a subtype of NBIA. We generated CNS-specific Wdr45 knockout mice, which exhibit poor motor coordination, greatly impaired learning and memory, and extensive axon swelling with numerous axon spheroids. Autophagic flux is defective and SQSTM1 (sequestosome-1)/p62 and ubiquitin-positive protein aggregates accumulate in neurons and swollen axons. Nes-Wdr45(fl/Y) mice recapitulate some hallmarks of BPAN, including cognitive impairment and defective axonal homeostasis, providing a model for revealing the disease pathogenesis of BPAN and also for investigating the possible role of autophagy in axon maintenance.
Keywords: ACTB, β-actin; AMC, aminomethylcoumarin; Atg, autophagy-related; BPAN, β-propeller protein-associated neurodegeneration; CALB, calbindin; CNS, central nervous system; DCN, deep cerebellar nuclei; Ei24, etoposide-induced gene 24; GFAP, glial fibrillary acid protein; H&E, hematoxylin and eosin; KO, knockout; LC3, microtubule-associated protein 1 light chain 3; LTP, long-term potentiation; MBP, myelin basic protein; NBIA, neurodegeneration with brain iron accumulation; RBFOX3, RNA binding protein, fox-1 homolog (C. elegans) 3; SENDA, static encephalopathy of childhood with neurodegeneration in adulthood; SQSTM1, sequestosome-1; WDR5/WIPI4, WD repeat domain 45; WT, wild type.; Wdr45/Wipi4; autophagy; axon swelling; epg, ectopic P granule; fEPSP, field excitatory postsynaptic potential; learning and memory; neurodegeneration; rpm, rotations per min.
Figures
References
-
- Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 2009; 10:458-67; PMID:19491929; http://dx.doi.org/10.1038/nrm2708. - DOI - PubMed
-
- Tian Y, Li Z, Hu W, Ren H, Tian E, Zhao Y, Lu Q, Huang X, Yang P, Li X, et al.. C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 2010; 141:1042-55; PMID:20550938; http://dx.doi.org/10.1016/j.cell.2010.04.034. - DOI - PubMed
-
- Lu Q, Yang P, Huang X, Hu W, Guo B, Wu F, Lin L, Kovács AL, Yu L, Zhang H. The WD40 repeat PtdIns(3)P-binding protein EPG-6 regulates progression of omegasomes to autophagosomes. Dev Cell 2011; 21:343-57; PMID:21802374; http://dx.doi.org/10.1016/j.devcel.2011.06.024. - DOI - PubMed
-
- Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008; 132:27-42; PMID:18191218; http://dx.doi.org/10.1016/j.cell.2007.12.018. - DOI - PMC - PubMed
-
- Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, et al.. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006; 441:885-9; PMID:16625204; http://dx.doi.org/10.1038/nature04724. - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous