Evaluating molecular cobalt complexes for the conversion of N2 to NH3
- PMID: 26001022
- PMCID: PMC4603980
- DOI: 10.1021/acs.inorgchem.5b00645
Evaluating molecular cobalt complexes for the conversion of N2 to NH3
Abstract
Well-defined molecular catalysts for the reduction of N2 to NH3 with protons and electrons remain very rare despite decades of interest and are currently limited to systems featuring molybdenum or iron. This report details the synthesis of a molecular cobalt complex that generates superstoichiometric yields of NH3 (>200% NH3 per Co-N2 precursor) via the direct reduction of N2 with protons and electrons. While the NH3 yields reported herein are modest by comparison to those of previously described iron and molybdenum systems, they intimate that other metals are likely to be viable as molecular N2 reduction catalysts. Additionally, a comparison of the featured tris(phosphine)borane Co-N2 complex with structurally related Co-N2 and Fe-N2 species shows how remarkably sensitive the N2 reduction performance of potential precatalysts is. These studies enable consideration of the structural and electronic effects that are likely relevant to N2 conversion activity, including the π basicity, charge state, and geometric flexibility.
Figures








Similar articles
-
Catalytic N2-to-NH3 (or -N2H4) Conversion by Well-Defined Molecular Coordination Complexes.Chem Rev. 2020 Jun 24;120(12):5582-5636. doi: 10.1021/acs.chemrev.9b00638. Epub 2020 Apr 30. Chem Rev. 2020. PMID: 32352271 Free PMC article. Review.
-
Catalytic reduction of N2 to NH3 by an Fe-N2 complex featuring a C-atom anchor.J Am Chem Soc. 2014 Jan 22;136(3):1105-15. doi: 10.1021/ja4114962. Epub 2014 Jan 9. J Am Chem Soc. 2014. PMID: 24350667 Free PMC article.
-
Catalytic conversion of nitrogen to ammonia by an iron model complex.Nature. 2013 Sep 5;501(7465):84-7. doi: 10.1038/nature12435. Nature. 2013. PMID: 24005414 Free PMC article.
-
An Fe-N₂ Complex That Generates Hydrazine and Ammonia via Fe═NNH₂: Demonstrating a Hybrid Distal-to-Alternating Pathway for N₂ Reduction.J Am Chem Soc. 2016 Mar 30;138(12):4243-8. doi: 10.1021/jacs.6b01230. Epub 2016 Mar 21. J Am Chem Soc. 2016. PMID: 26937584 Free PMC article.
-
Comparing Molecular Mechanisms in Solar NH3 Production and Relations with CO2 Reduction.Int J Mol Sci. 2020 Dec 25;22(1):139. doi: 10.3390/ijms22010139. Int J Mol Sci. 2020. PMID: 33375617 Free PMC article. Review.
Cited by
-
Examining the Generality of Metal-Ligand Cooperativity Across a Series of First-Row Transition Metals: Capture, Bond Activation, and Stabilization.Inorg Chem. 2020 Jul 6;59(13):9279-9286. doi: 10.1021/acs.inorgchem.0c01163. Epub 2020 Jun 18. Inorg Chem. 2020. PMID: 32551605 Free PMC article.
-
Catalytic N2-to-NH3 (or -N2H4) Conversion by Well-Defined Molecular Coordination Complexes.Chem Rev. 2020 Jun 24;120(12):5582-5636. doi: 10.1021/acs.chemrev.9b00638. Epub 2020 Apr 30. Chem Rev. 2020. PMID: 32352271 Free PMC article. Review.
-
N2 -to-NH3 Conversion by a triphos-Iron Catalyst and Enhanced Turnover under Photolysis.Angew Chem Int Ed Engl. 2017 Jun 6;56(24):6921-6926. doi: 10.1002/anie.201703244. Epub 2017 May 10. Angew Chem Int Ed Engl. 2017. PMID: 28489303 Free PMC article.
-
Dinitrogen Fixation: Rationalizing Strategies Utilizing Molecular Complexes.Chemistry. 2021 Feb 24;27(12):3892-3928. doi: 10.1002/chem.202003134. Epub 2020 Dec 29. Chemistry. 2021. PMID: 32914919 Free PMC article. Review.
-
Synthesis and Reactivity of Manganese Complexes Bearing Anionic PNP- and PCP-Type Pincer Ligands toward Nitrogen Fixation.Molecules. 2022 Apr 6;27(7):2373. doi: 10.3390/molecules27072373. Molecules. 2022. PMID: 35408764 Free PMC article.
References
-
- Smil V. Enriching the Earth. MIT Press; Cambridge: 2001.
-
- Hidai M, Takahashi T, Yokotake I, Uchida Y. Chem Lett. 1980:645.
-
- Yamamoto A, Miura Y, Ito T, Chen H, Iri K, Ozawa F, Miki K, Sei T, Tanaka N, Kasai N. Organometallics. 1983;2:1429.
-
- Fryzuk MD. Acc Chem Res. 2009;42:127. - PubMed
- Schrock RR. Angew Chem Int Ed. 2008;47:5512. - PubMed
- Chirik PJ. Dalton Trans. 2007:16. - PubMed
- Peters JC, Mehn MP. In: Activation of Small Molecules: Organometallic and Bioinorganic Perspectives. Tolman WB, editor. Wiley-VCH; New York: 2006. pp. 81–119.
- Crossland JL, Tyler DR. Coord Chem Rev. 2010;254:1883.
- Chatt J, Dilworth JR, Richards RL. Chem Rev. 1978;78:589.
- Siedschlag RB, Bernales V, Vogiatzis KD, Planas N, Clouston LJ, Bill E, Gagliardi L, Lu CC. J Am Chem Soc. 2015;137:4638. - PubMed
-
- Laplaza CE, Cummins CC. Science. 1995;268:861. - PubMed
- Zanotti-Gerosa A, Solari E, Giannini L, Floriani C, Chiesi-Villa A, Rizzoli C. J Am Chem Soc. 1998;120:437.
- Nikiforov GB, Vidyaratne I, Gambarotta S, Korobkov I. Angew Chem Int Ed. 2009;48:7415. - PubMed
- Vidyaratne I, Crewdson P, Lefebvre E, Gambarotta S. Inorg Chem. 2007;46:8836. - PubMed
- Clentsmith GKB, Bates VME, Hitchcock PB, Cloke FGN. J Am Chem Soc. 1999;121:10444.
- Hebden TJ, Schrock RR, Takase MK, Müller P. Chem Commun. 2012;48:1851. - PubMed
- Rodriguez MM, Bill E, Brennessel WW, Holland PL. Science. 2011;334:780. - PMC - PubMed
- Curley JJ, Cook TR, Reece SY, Müller P, Cummins CC. J Am Chem Soc. 2008;130:9394. - PubMed
- Fryzuk MD, Kozak CM, Bowdridge MR, Patrick BO, Rettig SJ. J Am Chem Soc. 2002;124:8389. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous