Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 May 23:15:504.
doi: 10.1186/s12889-015-1847-6.

Objective measurement of sedentary behavior: impact of non-wear time rules on changes in sedentary time

Affiliations

Objective measurement of sedentary behavior: impact of non-wear time rules on changes in sedentary time

Xanne Janssen et al. BMC Public Health. .

Abstract

Background: Accelerometry non-wear time rules might affect sedentary time, and the associations with health outcomes such as adiposity. However, the exact effect of different non-wear time rules on sedentary time and reported changes in sedentary time is unknown. This study evaluated the effect of different accelerometry non-wear time rules on sedentary time and changes in sedentary time from age 9-12 years.

Methods: Accelerometry data were collected as part of the Gateshead Millennium Birth Cohort study. Participants were 9.3 (± 0.4) years at baseline (n = 17) and 12.5 (± 0.3) years at follow-up (n = 440). Sedentary time was defined using an accelerometry cut-point of 25 counts per 15 s. Non-wear time was defined using manual data reduction (the reference method) and 10 min, 20 min and 60 min consecutive zeros. Differences between methods were analyzed using repeated measures ANOVA with Bonferroni post-hoc analyses.

Results: Mean daily sedentary time at age 9 ranged from 364 min per day to 426 min using the 10 min and 60 min rule, respectively (p < 0.05). At 12 years, mean daily sedentary times ranged from 424 min to 518 min (p < 0.05). Mean changes in daily sedentary time over the three years ranged from 60 min to 93 min using the 10 min and 60 min rule, respectively (p < 0.05). When adjusting for wear time, differences in average sedentary time between methods decreased from 62 min to 27 min (age 9), 95 min to 32 min (age 12) and 33 min to 10 min (changes between 9 to 12 years).

Conclusions: Using different non-wear time rules results in significant differences in daily sedentary time and changes in sedentary time. Correcting for wear time appears to be a reasonable approach to limiting these differences and may improve comparability between future studies. Using the 20 min rule, while correcting for wear time, provided the most accurate estimates of sedentary time and changes in sedentary time, compared to the manual reference in 9-12 year-olds.

PubMed Disclaimer

References

    1. Sedentary Behaviour Research Network Standardized use of the terms “sedentary” and “sedentary behaviours”. Appl Physiol Nutr Metab. 2012;37:540–542. doi: 10.1139/h2012-024. - DOI - PubMed
    1. Tremblay MS, LeBlanc AG, Kho ME, Saunders TJ, Larouche R, Colley RC, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int J Behav Nutr Phys Act. 2011;8:98. doi: 10.1186/1479-5868-8-98. - DOI - PMC - PubMed
    1. Biddle SJ, O'Connell S, Braithwaite RE. Sedentary behaviour interventions in young people: a meta-analysis. Br J Sports Med. 2011;45:937–942. doi: 10.1136/bjsports-2011-090205. - DOI - PubMed
    1. Trost SG, McIver KL, Pate RR. Conducting accelerometer-based activity assessments in field-based research. Med Sci Sports Exerc. 2005;37(Suppl):S531–S543. doi: 10.1249/01.mss.0000185657.86065.98. - DOI - PubMed
    1. Heil DP, Brage S, Rothney MP. Modeling physical activity outcomes from wearable monitors. Med Sci Sports Exerc. 2012;44(Suppl 1):S50–S60. doi: 10.1249/MSS.0b013e3182399dcc. - DOI - PubMed

Publication types