Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Oct;1854(10 Pt A):1325-37.
doi: 10.1016/j.bbapap.2015.05.005. Epub 2015 May 19.

Regulatory function of the C-terminal segment of guanylate cyclase-activating protein 2

Affiliations

Regulatory function of the C-terminal segment of guanylate cyclase-activating protein 2

Evgeni Yu Zernii et al. Biochim Biophys Acta. 2015 Oct.

Abstract

Neuronal responses to Ca2+-signals are provided by EF-hand-type neuronal Ca2+-sensor (NCS) proteins, which have similar core domains containing Ca2+-binding and target-recognizing sites. NCS proteins vary in functional specificity, probably depending on the structure and conformation of their non-conserved C-terminal segments. Here, we investigated the role of the C-terminal segment in guanylate cyclase activating protein-2, GCAP2, an NCS protein controlling the Ca2+-dependent regulation of photoreceptor guanylate cyclases. We obtained two chimeric proteins by exchanging C-terminal segments between GCAP2 and its photoreceptor homolog recoverin, a Ca2+-sensor controlling rhodopsin kinase (RK) activity. The exchange affected neither the structural integrity of GCAP2 and recoverin nor the Ca2+-sensitivity of GCAP2. Intrinsic fluorescence, circular dichroism, biochemical studies and hydrophobic dye probing revealed Ca2+-dependent conformational transition of the C-terminal segment of GCAP2 occurring in the molecular environment of both proteins. In Ca2+-GCAP2, the C-terminal segment was constrained and its replacement provided the protein with approximately two-fold inhibitory activity towards RK, suggesting that the segment contributes to specific target recognition by interfering with RK-binding. Upon Ca2+-release, it became less constrained and more available for phosphorylation by cyclic nucleotide-dependent protein kinase. The transition from the Ca2+-bound to the apo-state exposed hydrophobic sites in GCAP2, and was associated with its activating function without affecting its dimerization. The released C-terminal segment participated further in photoreceptor membrane binding making it sensitive to phosphorylation. Thus, the C-terminal segment in GCAP2 confers target selectivity, facilitates membrane binding and provides sensitivity of the membrane localization of the protein to phosphorylation by signaling kinases.

Keywords: Guanylate cyclase-activating protein 2 (GCAP2); Neuronal calcium sensor (NCS) protein; Photoreceptors; Recoverin; Retinal guanylate cyclase (ROS-GC1); Rhodopsin kinase (RK, GRK1).

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources