Infrared Imaging and Spectroscopy Beyond the Diffraction Limit
- PMID: 26001952
- DOI: 10.1146/annurev-anchem-071114-040435
Infrared Imaging and Spectroscopy Beyond the Diffraction Limit
Abstract
Progress in nanotechnology is enabled by and dependent on the availability of measurement methods with spatial resolution commensurate with nanomaterials' length scales. Chemical imaging techniques, such as scattering scanning near-field optical microscopy (s-SNOM) and photothermal-induced resonance (PTIR), have provided scientists with means of extracting rich chemical and structural information with nanoscale resolution. This review presents some basics of infrared spectroscopy and microscopy, followed by detailed descriptions of s-SNOM and PTIR working principles. Nanoscale spectra are compared with far-field macroscale spectra, which are widely used for chemical identification. Selected examples illustrate either technical aspects of the measurements or applications in materials science. Central to this review is the ability to record nanoscale infrared spectra because, although chemical maps enable immediate visualization, the spectra provide information to interpret the images and characterize the sample. The growing breadth of nanomaterials and biological applications suggest rapid growth for this field.
Keywords: PTIR; chemical composition; nanomaterials; nanoscale infrared spectroscopy; resonance-enhanced AFM-IR; s-SNOM.
Similar articles
-
Nanoscale infrared spectroscopy: improving the spectral range of the photothermal induced resonance technique.Anal Chem. 2013 Feb 19;85(4):1972-9. doi: 10.1021/ac303620y. Epub 2013 Feb 4. Anal Chem. 2013. PMID: 23363013
-
Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy.ACS Nano. 2011 Aug 23;5(8):6494-9. doi: 10.1021/nn2017638. Epub 2011 Jul 27. ACS Nano. 2011. PMID: 21770439
-
Quantifying nanoscale biochemical heterogeneity in human epithelial cancer cells using combined AFM and PTIR absorption nanoimaging.J Biophotonics. 2015 Jan;8(1-2):133-41. doi: 10.1002/jbio.201300138. Epub 2013 Nov 8. J Biophotonics. 2015. PMID: 24307406
-
Nanoscale Optical Microscopy and Spectroscopy Using Near-Field Probes.Annu Rev Chem Biomol Eng. 2018 Jun 7;9:365-387. doi: 10.1146/annurev-chembioeng-060817-084150. Epub 2018 Mar 29. Annu Rev Chem Biomol Eng. 2018. PMID: 29596000 Review.
-
Super-resolution mid-infrared spectro-microscopy of biological applications through tapping mode and peak force tapping mode atomic force microscope.Adv Drug Deliv Rev. 2022 Jan;180:114080. doi: 10.1016/j.addr.2021.114080. Epub 2021 Dec 11. Adv Drug Deliv Rev. 2022. PMID: 34906646 Review.
Cited by
-
Elucidating the Role of Lipids in the Aggregation of Amyloidogenic Proteins.Acc Chem Res. 2023 Nov 7;56(21):2898-2906. doi: 10.1021/acs.accounts.3c00386. Epub 2023 Oct 12. Acc Chem Res. 2023. PMID: 37824095 Free PMC article.
-
Engineering Near-Field SEIRA Enhancements in Plasmonic Resonators.ACS Photonics. 2016 Jan;3(1):87-95. doi: 10.1021/acsphotonics.5b00466. Epub 2015 Dec 15. ACS Photonics. 2016. PMID: 27182532 Free PMC article.
-
Nanoscale Chemical Imaging of Individual, Chemotherapeutic Cytarabine-loaded Liposomal Nanocarriers.Nano Res. 2019;12:10.1007/s12274-018-2202-x. doi: 10.1007/s12274-018-2202-x. Nano Res. 2019. PMID: 31275527 Free PMC article.
-
Beating thermal noise in a dynamic signal measurement by a nanofabricated cavity optomechanical sensor.Sci Adv. 2023 Mar 17;9(11):eadf7595. doi: 10.1126/sciadv.adf7595. Epub 2023 Mar 15. Sci Adv. 2023. PMID: 36921059 Free PMC article.
-
Characterization of Substrates and Surface-Enhancement in Atomic Force Microscopy Infrared Analysis of Amyloid Aggregates.J Phys Chem C Nanomater Interfaces. 2022 Mar 3;126(8):4157-4162. doi: 10.1021/acs.jpcc.1c09643. Epub 2022 Feb 17. J Phys Chem C Nanomater Interfaces. 2022. PMID: 35719853 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous