Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Sep 15;763(Pt A):79-89.
doi: 10.1016/j.ejphar.2015.03.101. Epub 2015 May 21.

Epigenetic pathways in macrophages emerge as novel targets in atherosclerosis

Affiliations
Review

Epigenetic pathways in macrophages emerge as novel targets in atherosclerosis

Annette E Neele et al. Eur J Pharmacol. .

Abstract

Atherosclerosis is a lipid-driven chronic inflammatory disorder. Monocytes and macrophages are key immune cells in the development of disease and clinical outcome. It is becoming increasingly clear that epigenetic pathways govern many aspects of monocyte and macrophage differentiation and activation. The dynamic regulation of epigenetic patterns provides opportunities to alter disease-associated epigenetic states. Therefore, pharmaceutical companies have embraced the targeting of epigenetic processes as new approaches for interventions. Particularly histone deacetylase (Hdac) inhibitors and DNA-methyltransferase inhibitors have long received attention and several of them have been approved for clinical use in relation to hematological malignancies. The key focus is still on oncology, but Alzheimer's disease, Huntington's disease and inflammatory disorders are coming in focus as well. These developments raise opportunities for the epigenetic targeting in cardiovascular disease (CVD). In this review we discuss the epigenetic regulation of the inflammatory pathways in relation to atherosclerosis with a specific attention to monocyte- and macrophage-related processes. What are the opportunities for future therapy of atherosclerosis by epigenetic interventions?

Keywords: Epigenetics; Hdac inhibition; Histone methylation; Inflammation; Innate immunity; Macrophage polarization.

PubMed Disclaimer

Publication types