Using concatenated subunits to investigate the functional consequences of heterotetrameric inositol 1,4,5-trisphosphate receptors
- PMID: 26009177
- PMCID: PMC4677331
- DOI: 10.1042/BST20140287
Using concatenated subunits to investigate the functional consequences of heterotetrameric inositol 1,4,5-trisphosphate receptors
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are a family of ubiquitous, ER localized, tetrameric Ca2+ release channels. There are three subtypes of the IP3Rs (R1, R2, R3), encoded by three distinct genes, that share ∼60-70% sequence identity. The diversity of Ca2+ signals generated by IP3Rs is thought to be largely the result of differential tissue expression, intracellular localization and subtype-specific regulation of the three subtypes by various cellular factors, most significantly InsP3, Ca2+ and ATP. However, largely unexplored is the notion of additional signal diversity arising from the assembly of both homo and heterotetrameric InsP3Rs. In the present article, we review the biochemical and functional evidence supporting the existence of homo and heterotetrameric populations of InsP3Rs. In addition, we consider a strategy that utilizes genetically concatenated InsP3Rs to study the functional characteristics of heterotetramers with unequivocally defined composition. This approach reveals that the overall properties of IP3R are not necessarily simply a blend of the constituent monomers but that specific subtypes appear to dominate the overall characteristics of the tetramer. It is envisioned that the ability to generate tetramers with defined wild type and mutant subunits will be useful in probing fundamental questions relating to IP3R structure and function.
Figures
References
-
- Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000;1:11–21. - PubMed
-
- Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol. 2003;4:552–565. - PubMed
-
- Hogan PG, Chen L, Nardone J, Rao A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 2003;17:2205–2232. - PubMed
-
- Goonasekera SA, Molkentin JD. Unraveling the secrets of a double life: contractile versus signaling Ca2+ in a cardiac myocyte. J Mol Cell Cardiol. 2012;52:317–322. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
