Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Sep;104(9):3229-35.
doi: 10.1002/jps.24505. Epub 2015 May 25.

Few Drugs Display Flip-Flop Pharmacokinetics and These Are Primarily Associated with Classes 3 and 4 of the BDDCS

Affiliations

Few Drugs Display Flip-Flop Pharmacokinetics and These Are Primarily Associated with Classes 3 and 4 of the BDDCS

Kimberly L Garrison et al. J Pharm Sci. 2015 Sep.

Abstract

This study was conducted to determine the number of drugs exhibiting flip-flop pharmacokinetics following oral (p.o.) dosing from immediate-release dosage forms and if they exhibit a common characteristic that may be predicted based on BDDCS classification. The literature was searched for drugs displaying flip-flop kinetics (i.e., absorption half-life larger than elimination half-life) in mammals in PubMed, via internet search engines and reviewing drug pharmacokinetic data. Twenty two drugs were identified as displaying flip-flop kinetics in humans (13 drugs), rat (nine drugs), monkey (three drugs), horse (two drugs), and/or rabbit (two drugs). Nineteen of the 22 drugs exhibiting flip-flop kinetics were BDDCS Classes 3 and 4. One of the three exceptions, meclofenamic acid (Class 2), was identified in the horse; however, it would not exhibit flip-flop kinetics in humans where the p.o. dosing terminal half-life is 1.4 h. The second, carvedilol, can be explained based on solubility issues, but the third sapropterin dihydrochloride (nominally Class 1) requires further consideration. The few drugs displaying p.o. flip-flop kinetics in humans are predominantly BDDCS Classes 3 and 4. New molecular entities predicted to be BDDCS Classes 3 and 4 could be liable to exhibit flip-flop kinetics when the elimination half life is short and should be suspected to be substrates for intestinal transporters.

Keywords: BDDCS; absorption; disposition; flip-flop pharmacokinetics; half-life; intestinal absorption; oral drug absorption; pharmacokinetics; transporters.

PubMed Disclaimer

Figures

Figure 1
Figure 1. The Biophamaceutics Drug Disposition Classification System predicts the effects of transporters on drug absorption in the gut

Similar articles

Cited by

References

    1. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–420. - PubMed
    1. Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22(1):11–23. - PubMed
    1. Shugarts S, Benet LZ. The role of transporters in the pharmacokinetics of orally administered drugs. Pharm Res. 2009;26(9):2039–2054. - PMC - PubMed
    1. Yáñez JA, Remsberg CM, Sayre CL, Forrest ML, Davies NM. Flip-flop pharmacokinetics--delivering a reversal of disposition: challenges and opportunities during drug development. Ther Deliv. 2011;2(5):643–672. - PMC - PubMed
    1. Han N, Yun HY, Kim IW, Oh YJ, Kim YS, Oh JM. Population pharmacogenetic pharmacokinetic modeling for flip-flop phenomenon of enteric-coated mycophenolate sodium in kidney transplant recipients. Eur J Clin Pharmacol. 2014;70(10):1211–1219. - PubMed

Publication types

Substances