On the final size of epidemics in random environment
- PMID: 26013291
- DOI: 10.1016/j.mbs.2015.05.004
On the final size of epidemics in random environment
Abstract
This paper extends the final size result of the classical SIR epidemic model in constant and periodic environments to random environment. Conditionally on the basic reproduction number R0 recently defined for random environment and the initial infected population fraction, we prove a final size result of an epidemic governed by the SIR model with time-depending parameters. The parameters are driven by an ergodic inhomogeneous time-periodic Markov process with finite state space. We also analyze the classical SEIR epidemic model in random environment.
Keywords: Basic reproduction number; Final epidemic size; Random environment; SIR and SEIR model.
Copyright © 2015. Published by Elsevier Inc.
Similar articles
-
Reproduction numbers for epidemic models with households and other social structures II: Comparisons and implications for vaccination.Math Biosci. 2016 Apr;274:108-39. doi: 10.1016/j.mbs.2016.01.006. Epub 2016 Feb 2. Math Biosci. 2016. PMID: 26845663
-
On the final size of epidemics with seasonality.Bull Math Biol. 2009 Nov;71(8):1954-66. doi: 10.1007/s11538-009-9433-7. Epub 2009 May 28. Bull Math Biol. 2009. PMID: 19475453
-
The basic reproduction number, R0, in structured populations.Math Biosci. 2019 Sep;315:108224. doi: 10.1016/j.mbs.2019.108224. Epub 2019 Jul 2. Math Biosci. 2019. PMID: 31276681
-
Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages.Bull Math Biol. 2009 Jan;71(1):75-83. doi: 10.1007/s11538-008-9352-z. Epub 2008 Sep 4. Bull Math Biol. 2009. PMID: 18769976
-
SEIRS epidemics with disease fatalities in growing populations.Math Biosci. 2018 Feb;296:45-59. doi: 10.1016/j.mbs.2017.11.006. Epub 2017 Nov 16. Math Biosci. 2018. PMID: 29155133 Review.
MeSH terms
LinkOut - more resources
Full Text Sources