Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jun 9;31(22):6027-34.
doi: 10.1021/acs.langmuir.5b01129. Epub 2015 May 28.

Microfluidic Production of Semipermeable Microcapsules by Polymerization-Induced Phase Separation

Affiliations

Microfluidic Production of Semipermeable Microcapsules by Polymerization-Induced Phase Separation

Bomi Kim et al. Langmuir. .

Abstract

Semipermeable microcapsules are appealing for controlled release of drugs, study of cell-to-cell communication, and isolation of enzymes or artificial catalysts. Here, we report a microfluidic strategy for creating monodisperse microcapsules with size-selective permeability using polymerization-induced phase separation. Monodisperse water-in-oil-in-water (W/O/W) double-emulsion drops, whose ultrathin middle layer is composed of photocurable resin and inert oil, are generated in a capillary microfluidic device, and irradiated by UV light. Upon UV illumination, the monomers are photopolymerized, which leads to phase separation between the polymerized resin and the oil within the ultrathin shell. Subsequent dissolution of the oil leaves behind regular pores in the polymerized membrane that interconnect the interior and exterior of the microcapsules, thereby providing size-selective permeability. The degree of phase separation can be further tuned by adjusting the fraction of oil in the shell or the affinity of the oil to the monomers, thereby enabling the control of the cutoff value of permeation. High mechanical stability and chemical resistance of the microcapsules, as well as controllable permeability and high encapsulation efficiency, will provide new opportunity in a wide range of applications.

PubMed Disclaimer

LinkOut - more resources