Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 May 28;10(5):e0126960.
doi: 10.1371/journal.pone.0126960. eCollection 2015.

Metagenomic insights into the bioaerosols in the indoor and outdoor environments of childcare facilities

Affiliations

Metagenomic insights into the bioaerosols in the indoor and outdoor environments of childcare facilities

Su-Kyoung Shin et al. PLoS One. .

Abstract

Airborne microorganisms have significant effects on human health, and children are more vulnerable to pathogens and allergens than adults. However, little is known about the microbial communities in the air of childcare facilities. Here, we analyzed the bacterial and fungal communities in 50 air samples collected from five daycare centers and five elementary schools located in Seoul, Korea using culture-independent high-throughput pyrosequencing. The microbial communities contained a wide variety of taxa not previously identified in child daycare centers and schools. Moreover, the dominant species differed from those reported in previous studies using culture-dependent methods. The well-known fungi detected in previous culture-based studies (Alternaria, Aspergillus, Penicillium, and Cladosporium) represented less than 12% of the total sequence reads. The composition of the fungal and bacterial communities in the indoor air differed greatly with regard to the source of the microorganisms. The bacterial community in the indoor air appeared to contain diverse bacteria associated with both humans and the outside environment. In contrast, the fungal community was largely derived from the surrounding outdoor environment and not from human activity. The profile of the microorganisms in bioaerosols identified in this study provides the fundamental knowledge needed to develop public health policies regarding the monitoring and management of indoor air quality.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Principal coordinate analysis (PCoA) of the (A) bacterial and (B) fungal communities in childcare facilities.
Fifty samples were collected from the indoor (blue symbols) and outdoor (red symbols) air of five daycare centers (sites A–E, circles) and five elementary schools (sites F–J, triangles). Differences in the composition of the microbial communities were quantified using the weighted UniFrac distance metric. The green dotted lines and circles indicate pairs of indoor and outdoor samples from the same sampling site. The distinctive bacterial community structures in the indoor and outdoor air were supported by the p-values determined by Wilcoxon t-test.
Fig 2
Fig 2. Relative abundance of bacteria identified at the genus level in indoor and outdoor air.
The sampling sites and replicates are indicated as letters and numbers, respectively, shown in columns. The taxonomic groups that had an average abundance >1.2% are shown.
Fig 3
Fig 3. Fungi in indoor and outdoor air identified at the phylum and class levels.
The inner circles indicate the composition of fungal reads at the phylum level, and the outer circles indicate the composition of the fungal community at the class level.
Fig 4
Fig 4. Relative abundance of four allergenic fungi in indoor and outdoor air samples.
The solid black lines represent the medians, and the circles are outliers. Bars denote the minimum and maximum values excluding the outliers.

Similar articles

Cited by

References

    1. Burrows SM, Elbert W, Lawrence MG, Poschl U. Bacteria in the global atmosphere—Part 1: Review and synthesis of literature data for different ecosystems. Atmos Chem Phys. 2009;9: 9263–9280.
    1. Bauer H, Kasper-Giebl A, Loflund M, Giebl H, Hitzenberger R, Zibuschka F, et al. The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmos Res. 2002;64: 109–119.
    1. Elbert W, Taylor PE, Andreae MO, Poschl U. Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions. Atm Chem Phys. 2007;7: 4569–4588.
    1. Frohlich-Nowoisky J, Burrows SM, Xie Z, Engling G, Solomon PA, Fraser MP, et al. Biogeography in the air: fungal diversity over land and oceans. Biogeosciences. 2012;9: 1125–1136.
    1. Despres VR, Huffman JA, Burrows SM, Hoose C, Safatov AS, Buryak G, et al. Primary biological aerosol particles in the atmosphere: a review. Tellus B Chem Phys Meteorol. 2012;64: 1–58.

Publication types