Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Oct:108:37-43.
doi: 10.1016/j.meatsci.2015.04.018. Epub 2015 May 9.

Predicting pork quality using Vis/NIR spectroscopy

Affiliations

Predicting pork quality using Vis/NIR spectroscopy

Juliana Monteiro Balage et al. Meat Sci. 2015 Oct.

Abstract

Visible and near-infrared reflectance spectroscopy (Vis/NIRS) was used to predict the ultimate pH (pHu), color, intramuscular fat (IMF) and shear force (WBSF) of pork samples and to build classifiers capable of categorizing the samples by tenderness (tender or tough) and juiciness (juicy and dry). Spectra were collected from 400 to 1495nm, and 200 data points were generated for every sample (n=134). Sixty-seven percent of the sample set was used for calibration, and 33% was used for validation. Partial least squares (PLS) calibration models were developed for each characteristic measured. A coefficient of determination (R(2)) and residual prediction deviation (RPD) were used to evaluate the accuracy of the calibration models. The pHu and color prediction models developed in this study fit this classification, indicating that these predictive models can be used to predict quality traits of intact pork samples. The Vis/NIRS offered great potential for correctly classifying pork Longissimus into two tenderness and two juiciness classes.

Keywords: NIR spectroscopy; Pork; Quality classification; Quality prediction.

PubMed Disclaimer

Publication types

LinkOut - more resources