Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2015 Jun 2;10(6):e0127622.
doi: 10.1371/journal.pone.0127622. eCollection 2015.

Impact of withholding breastfeeding at the time of vaccination on the immunogenicity of oral rotavirus vaccine--a randomized trial

Affiliations
Randomized Controlled Trial

Impact of withholding breastfeeding at the time of vaccination on the immunogenicity of oral rotavirus vaccine--a randomized trial

Asad Ali et al. PLoS One. .

Erratum in

Abstract

Background: Breast milk contains anti-rotavirus IgA antibodies and other innate immune factors that inhibit rotavirus replication in vitro. These factors could diminish the immunogenicity of oral rotavirus vaccines, particularly if breastfeeding occurs close to the time of vaccine administration.

Methods: Between April 2011 and November 2012, we conducted an open label, randomized trial to compare the immunogenicity of Rotarix (RV1) in infants whose breastfeeding was withheld one hour before through one hour after vaccination with that in infants breastfed at the time of vaccination. The trial was conducted in the peri-urban area of Ibrahim Hyderi in Karachi, Pakistan. Both groups received three doses of RV1 at 6, 10 and 14 weeks of age. Seroconversion (anti-rotavirus IgA antibodies ≥ 20 U/mL in subjects seronegative at 6 weeks of age) following three vaccine doses (6, 10 and 14 weeks) was determined at 18 weeks of age (primary objective) and seroconversion following two doses (6 and 10 weeks) was determined at 14 weeks of age (secondary objective).

Results: Four hundred eligible infants were randomly assigned in a 1:1 ratio between the withholding breastfeeding and immediate breastfeeding arms. Overall, 353 (88.3%) infants completed the study according to protocol; 181 in the withholding breastfeeding group and 172 in the immediate breastfeeding group. After three RV1 doses, anti-rotavirus IgA antibody seroconversion was 28.2% (95% CI: 22.1; 35.1) in the withholding arm and 37.8% (95% CI: 30.9; 45.2) in the immediate breastfeeding arm (difference: -9.6% [95% CI: -19.2; 0.2] p = 0.07). After two doses of RV1, seroconversion was 16.6% (95% CI: 11.9; 22.7) in the withholding arm and 29.1% (95% CI: 22.8, 36.3) in the immediate breastfeeding arm (difference: -12.5% [95% CI: -21.2,-3.8] p = 0.005).

Conclusions: Withholding breastfeeding around the time of RV1 vaccine administration did not lead to increased anti-rotavirus IgA seroconversion compared with that seen with a breastfeed at the time of vaccination. On the contrary, IgA seroconversion in infants immediately breastfed tended to be higher than in those withheld from a feeding. Our findings suggest that breastfeeding should be continued adlib around the time of rotavirus vaccination and withholding breastfeeding at that time is unlikely to improve the vaccine immunogenicity.

Trial registration: ClinicalTrials.gov NCT01199874.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Study Assignment and Follow-Up of Participants.

References

    1. Tate JE, Burton AH, Boschi-Pinto C, Steele AD, Duque J, Parashar UD. 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect Dis. 2012;12(2):136–41. Epub 2011/10/28. S1473-3099(11)70253-5 [pii] 10.1016/S1473-3099(11)70253-5 . - DOI - PubMed
    1. Patel M, Shane AL, Parashar UD, Jiang B, Gentsch JR, Glass RI. Oral rotavirus vaccines: how well will they work where they are needed most? J Infect Dis. 2009;200 Suppl 1:S39–48. Epub 2009/10/13. 10.1086/605035 . - DOI - PMC - PubMed
    1. Jiang V, Jiang B, Tate J, Parashar UD, Patel MM. Performance of rotavirus vaccines in developed and developing countries. Hum Vaccin. 2010;6(7):532–42. Epub 2010/07/14. 11278 [pii]. . - PMC - PubMed
    1. Kvistgaard AS, Pallesen LT, Arias CF, Lopez S, Petersen TE, Heegaard CW, et al. Inhibitory effects of human and bovine milk constituents on rotavirus infections. J Dairy Sci. 2004;87(12):4088–96. Epub 2004/11/17. S0022-0302(04)73551-1 [pii] 10.3168/jds.S0022-0302(04)73551-1 . - DOI - PubMed
    1. Glass RI, Stoll BJ. The protective effect of human milk against diarrhea. A review of studies from Bangladesh. Acta Paediatr Scand Suppl. 1989;351:131–6. Epub 1989/01/01. . - PubMed

Publication types

MeSH terms

Associated data