Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jan;124(1):141-50.
doi: 10.1289/ehp.1409546. Epub 2015 Jun 5.

Elemental Constituents of Particulate Matter and Newborn's Size in Eight European Cohorts

Affiliations

Elemental Constituents of Particulate Matter and Newborn's Size in Eight European Cohorts

Marie Pedersen et al. Environ Health Perspect. 2016 Jan.

Abstract

Background: The health effects of suspended particulate matter (PM) may depend on its chemical composition. Associations between maternal exposure to chemical constituents of PM and newborn's size have been little examined.

Objective: We aimed to investigate the associations of exposure to elemental constituents of PM with term low birth weight (LBW; weight < 2,500 g among births after 37 weeks of gestation), mean birth weight, and head circumference, relying on standardized fine-scale exposure assessment and with extensive control for potential confounders.

Methods: We pooled data from eight European cohorts comprising 34,923 singleton births in 1994-2008. Annual average concentrations of elemental constituents of PM ≤ 2.5 and ≤ 10 μm (PM2.5 and PM10) at maternal home addresses during pregnancy were estimated using land-use regression models. Adjusted associations between each birth measurement and concentrations of eight elements (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) were calculated using random-effects regression on pooled data.

Results: A 200-ng/m3 increase in sulfur in PM2.5 was associated with an increased risk of LBW (adjusted odds ratio = 1.36; 95% confidence interval: 1.17, 1.58). Increased nickel and zinc in PM2.5 concentrations were also associated with an increased risk of LBW. Head circumference was reduced at higher exposure to all elements except potassium. All associations with sulfur were most robust to adjustment for PM2.5 mass concentration. All results were similar for PM10.

Conclusion: Sulfur, reflecting secondary combustion particles in this study, may adversely affect LBW and head circumference, independently of particle mass.

Citation: Pedersen M, Gehring U, Beelen R, Wang M, Giorgis-Allemand L, Andersen AM, Basagaña X, Bernard C, Cirach M, Forastiere F, de Hoogh K, Gražulevičienė R, Gruzieva O, Hoek G, Jedynska A, Klümper C, Kooter IM, Krämer U, Kukkonen J, Porta D, Postma DS, Raaschou-Nielsen O, van Rossem L, Sunyer J, Sørensen M, Tsai MY, Vrijkotte TG, Wilhelm M, Nieuwenhuijsen MJ, Pershagen G, Brunekreef B, Kogevinas M, Slama R. 2016. Elemental constituents of particulate matter and newborn's size in eight European cohorts. Environ Health Perspect 124:141-150; http://dx.doi.org/10.1289/ehp.1409546.

PubMed Disclaimer

Conflict of interest statement

The authors declare they have no actual or potential competing financial interests.

Figures

Figure 1
Figure 1
Distributions of exposure to PM constituents (ng/m3) by cohorts and for the pooled study population. Upper box plots for each element are for PM2.5 and the lower ones for PM10. The line in the middle of the box represents the median value, the ends of the box represent the 25th and 75th percentiles, and the whiskers indicate the variability outside the upper and lower quartiles (i.e., within 1.5 interquartile range of the lower quartile and upper quartile). Outliers are plotted as individual dots. Because no significant predictors could be included in the LUR models for a few study areas and pollutants, we were unable to estimate exposure to Fe PM25, K PM10, Ni PM2.5, S PM2.5, S PM10, and Zn PM2.5 for the participants from the KANC cohort; K PM2.5 was missing for the DUISBURG cohort; and Ni PM2.5 could not be estimated for the BAMSE cohort.

References

    1. Basu R, Harris M, Sie L, Malig B, Broadwin R, Green R. Effects of fine particulate matter and its constituents on low birth weight among full-term infants in California. Environ Res. 2014;128:42–51. - PubMed
    1. Bell ML, Belanger K, Ebisu K, Gent JF, Leaderer BP. Relationship between birth weight and exposure to airborne fine particulate potassium and titanium during gestation. Environ Res. 2012;117:83–89. - PMC - PubMed
    1. Bell ML, Belanger K, Ebisu K, Gent JF, Lee HJ, Koutrakis P, et al. Prenatal exposure to fine particulate matter and birth weight: variations by particulate constituents and sources. Epidemiology. 2010;21:884–891. - PMC - PubMed
    1. Bell ML, Dominici F, Ebisu K, Zeger SL, Samet JM.2007Spatial and temporal variation in PM2.5 chemical composition in the United States for health effects studies. Environ Health Perspect 115989–995.; doi:10.1289/ehp.9621 - DOI - PMC - PubMed
    1. Bellinger DC. Teratogen update: lead and pregnancy. Birth Defects Res A Clin Mol Teratol. 2005;73:409–420. - PubMed

Publication types

LinkOut - more resources