Microclimatic Divergence in a Mediterranean Canyon Affects Richness, Composition, and Body Size in Saproxylic Beetle Assemblages
- PMID: 26047491
- PMCID: PMC4457890
- DOI: 10.1371/journal.pone.0129323
Microclimatic Divergence in a Mediterranean Canyon Affects Richness, Composition, and Body Size in Saproxylic Beetle Assemblages
Abstract
Large valleys with opposing slopes may act as a model system with which the effects of strong climatic gradients on biodiversity can be evaluated. The advantage of such comparisons is that the impact of a change of climate can be studied on the same species pool without the need to consider regional differences. The aim of this study was to compare the assemblage of saproxylic beetles on such opposing slopes at Lower Nahal Oren, Mt. Carmel, Israel (also known as "Evolution Canyon") with a 200-800% higher solar radiation on the south-facing (SFS) compared to the north-facing slope (NFS). We tested specific hypotheses of species richness patterns, assemblage structure, and body size resulting from interslope differences in microclimate. Fifteen flight-interception traps per slope were distributed over three elevation levels ranging from 50 to 100 m a.s.l. Richness of saproxylic beetles was on average 34% higher on the SFS compared with the NFS, with no detected influence of elevation levels. Both assemblage structure and average body size were determined by slope aspect, with more small-bodied beetles found on the SFS. Both the increase in species richness and the higher prevalence of small species on the SFS reflect ecological rules present on larger spatial grain (species-energy hypothesis and community body size shift hypothesis), and both can be explained by the metabolic theory of ecology. This is encouraging for the complementary use of micro- and macroclimatic gradients to study impacts of climate warming on biodiversity.
Conflict of interest statement
Figures




References
-
- Ruiz-Labourdette D, Nogues-Bravo D, Ollero HS, Schmitz MF, Pineda FD (2012) Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change. Journal of Biogeography 39: 162–176.
-
- Reitalu T, Seppa H, Sugita S, Kangur M, Koff T, Avel E, et al. (2013) Long-term drivers of forest composition in a boreonemoral region: the relative importance of climate and human impact. Journal of Biogeography 40: 1524–1534.
-
- Clark JS, Bell DM, Hersh MH, Nichols L (2011) Climate change vulnerability of forest biodiversity: climate and competition tracking of demographic rates. Global Change Biology 17: 1834–1849.
-
- Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, et al. (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management 259: 698–709.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources