Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2015 Jun 6:15:87.
doi: 10.1186/s12883-015-0347-8.

Perturbation training to promote safe independent mobility post-stroke: study protocol for a randomized controlled trial

Affiliations
Randomized Controlled Trial

Perturbation training to promote safe independent mobility post-stroke: study protocol for a randomized controlled trial

Avril Mansfield et al. BMC Neurol. .

Abstract

Background: Falls are one of the most common medical complications post-stroke. Physical exercise, particularly exercise that challenges balance, reduces the risk of falls among healthy and frail older adults. However, exercise has not proven effective for preventing falls post-stroke. Falls ultimately occur when an individual fails to recover from a loss of balance. Thus, training to specifically improve reactive balance control could prevent falls. Perturbation training aims to improve reactive balance control by repeatedly exposing participants to postural perturbations. There is emerging evidence that perturbation training reduces fall rates among individuals with neurological conditions, such as Parkinson disease. The primary aim of this work is to determine if perturbation-based balance training can reduce occurrence of falls in daily life among individuals with chronic stroke. Secondary objectives are to determine the effect of perturbation training on balance confidence and activity restriction, and functional balance and mobility.

Methods/design: Individuals with chronic stroke will be recruited. Participants will be randomly assigned to one of two groups: 1) perturbation training, or 2) 'traditional' balance training. Perturbation training will involve both manual perturbations (e.g., a push or pull from a physiotherapist), and rapid voluntary movements to cause a loss of balance. Training will occur twice per week for 6 weeks. Participants will record falls and activity for 12 months following completion of the training program. Standardized clinical tools will be used to assess functional balance and mobility, and balance confidence before and after training.

Discussion: Falls are a significant problem for those with stroke. Despite the large body of work demonstrating effective interventions, such as exercise, for preventing falls in other populations, there is little evidence for interventions that prevent falls post-stroke. The proposed study will investigate a novel and promising intervention: perturbation training. If effective, this training has the potential to not only prevent falls, but to also improve safe independent mobility and engagement in daily activities for those with stroke.

Trial registration: Current Controlled Trials: ISRCTN05434601 .

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Study design flowchart. Following initial screening and consent, participants will undergo an initial assessment to confirm eligibility and facilitate group allocation. Eligible participants will be randomly assigned to either perturbation training or the control group. Immediately following completion of the training period, participants will repeat assessment of functional balance and mobility and balance confidence. Participants will then complete 12 months of regular falls and activity reporting. Participants will receive ‘booster’ training sessions 3 and 9 months after the initial training period. An interim follow-up assessment and final follow-up assessment will occur 6 and 12 months following the initial training period
Fig. 2
Fig. 2
Lean-and-release postural perturbation. The participant leans forward so that approximately 10 % of body weight is supported by a cable attached to her back. At an unexpected time, the cable is released, causing the participant to start falling forward; a reactive step is required to regain stability. The research assistant stands close to provide assistance if the participant is unable to regain stability by stepping. A safety harness attached to an overhead support frame is worn, which prevents a fall to the floor. Panel a shows the ‘usual response’ condition where the participant is free to respond naturally. Panel b shows the ‘encouraged use’ condition; the preferred stepping limb (typically the non-paretic limb) is blocked, preventing step initiation with that limb and forcing use of the opposite limb to regain stability. (The individual shown is not a research participant. Consent was obtained for publication of the picture in this manuscript)

References

    1. Langhorne P, Stott DJ, Robertson L, MacDonald J, Jones JL, McAlpine C, et al. Medical complications after stroke: a multicenter study. Stroke. 2000;31:1223–9. doi: 10.1161/01.STR.31.6.1223. - DOI - PubMed
    1. Weerdesteyn V, de Niet M, van Duijhoven HJR, Geurts ACH. Falls in individuals with stroke. J Rehabil Res Dev. 2008;45:1195–213. doi: 10.1682/JRRD.2007.09.0145. - DOI - PubMed
    1. Batchelor FA, Mackintosh SF, Said CM, Hill KD. Falls after stroke. Int J Stroke. 2012;7:482–90. - PubMed
    1. Greenlund KJ, Giles WH, Keenan NL, Croft JB, Mensah GA. Physician advice, patient actions, and health-related quality of life in secondary prevention of stroke through diet and exercise. Stroke. 2002;33:565–70. doi: 10.1161/hs0202.102882. - DOI - PubMed
    1. Keenan MA, Perry J, Jordan C. Factors affecting balance and ambulation following stroke. Clin Orthop Relat Res. 1984;182:165–71. - PubMed

Publication types