Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Oct 17;28(21):8466-73.
doi: 10.1021/bi00447a029.

Inhibition kinetics of acetylcholinesterase with fluoromethyl ketones

Affiliations

Inhibition kinetics of acetylcholinesterase with fluoromethyl ketones

K N Allen et al. Biochemistry. .

Abstract

A series of trifluoromethyl ketones that reversibly inhibit acetylcholinesterase and pseudocholinesterase were synthesized. By analogy to chymotrypsin and on the basis of data reported here, we propose that the active-site serine adds to the ketone to form an ionized hemiketal. The compound (5,5,5-trifluoro-4-oxopentyl)trimethylammonium bicarbonate (1) inhibits acetylcholinesterase with Ki = 0.06 X 10(-9)M and pseudocholinesterase with Ki = 70 X 10(-9)M. Replacement of the nitrogen of 1 by carbon (compound 2) increases Ki for 1 200-fold for acetylcholinesterase but does not significantly alter Ki for pseudocholinesterase. The Ki for the methyl ketone corresponding to 2 is 2 X 10(-4)M for both enzymes, as compared with 12 X 10(-9)M for the trifluoromethyl ketone (acetylcholinesterase). For both enzymes, a linear decrease in log Ki with decreasing pK of the inhibitor hydrate was observed with ketones containing from 0 to 3 fluorines. We attribute this effect to the stabilization of the hemiketal oxyanion. The reduction of the pK of the hemiketal by the trifluoromethyl group is an important contributing factor to the low Ki of trifluoromethyl ketones. The inhibition of acetylcholinesterase by tetramethylammonium chloride and trifluoroacetone was compared to the inhibition by 1, which is a composite of the two smaller inhibitors. The entropic advantage of combining the smaller inhibitors into one molecule is 1.1 X 10(3)M. Inhibitors with Ki less than or equal to 70 X 10(-9) M are slow binding (Morrison, 1982; Morrison & Walsh, 1988). The kinetic data do not require formation of a noncovalent complex prior to formation of the ketal, although such a complex(es) cannot be excluded.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources