Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jun;41(5):261-9.
doi: 10.3109/01902148.2015.1004206.

miR-132 inhibits lipopolysaccharide-induced inflammation in alveolar macrophages by the cholinergic anti-inflammatory pathway

Affiliations
Free article

miR-132 inhibits lipopolysaccharide-induced inflammation in alveolar macrophages by the cholinergic anti-inflammatory pathway

Fen Liu et al. Exp Lung Res. 2015 Jun.
Free article

Abstract

Objective: Although microRNA-132 (miR-132) has been shown to be involved in the inflammatory regulation, its role in sepsis-induced lung injury is unknown. We hypothesized that miR-132 attenuated lipopolysaccharide (LPS)-induced inflammation of alveolar macrophages by targeting acetylcholinesterase (AChE) and enhancing the acetylcholine (ACh)-mediated cholinergic anti-inflammatory response.

Methods: The LPS-treated rat alveolar macrophage cell line NR8383 was used as the inflammatory model. To assess the effect of miR-132, alveolar macrophages were transfected with miR-132 mimic or inhibitor.

Results: We found that miR-132 was upregulated in LPS-stimulated alveolar macrophages. Induction of AChE mRNA showed an inverse pattern with respect to AChE protein and activity, suggesting posttranscriptional regulation of AChE. Utilizing miR-132 mimic transfection, we found that overexpression of miR-132 enhanced the ACh-mediated cholinergic anti-inflammatory reaction by targeting AChE mRNA in LPS-treated alveolar macrophages. Blockage of miR-132 using miR-132 inhibitor reversed the Ach action upon LPS-induced release of inflammatory mediators and reduction in AchE protein/activity. Moreover, in the presence of ACh, upregulation of miR-132 suppressed LPS-induced nuclear translocation of NF-κB and production of STAT3 and phosphorylated STAT3, while downregulation of miR-132 enhanced the nuclear translocation of NF-κB.

Conclusion: We propose that miR-132 functions as a negative regulator of the inflammatory response in alveolar macrophages by potentiating the cholinergic anti-inflammatory pathway, and represents a potential therapeutic leverage point in modulating inflammatory responses.

Keywords: NF-κB; STAT3; alveolar macrophage; cholinergic anti-inflammatory pathway; microRNA-132.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources