Transforming growth factor-beta-1 is a serum biomarker of radiation-induced pneumonitis in esophageal cancer patients treated with thoracic radiotherapy: preliminary results of a prospective study
- PMID: 26056477
- PMCID: PMC4446015
- DOI: 10.2147/OTT.S79433
Transforming growth factor-beta-1 is a serum biomarker of radiation-induced pneumonitis in esophageal cancer patients treated with thoracic radiotherapy: preliminary results of a prospective study
Abstract
Objective: To examine the relationship between cytokine levels of transforming growth factor-beta-1 (TGF-β1), interleukin-1 beta (IL-1β), and angiotensin-converting enzyme (ACE) in the plasma of esophageal carcinoma patients and radiation-induced pneumonitis (RP).
Materials and methods: Sixty-three patients with esophageal carcinoma were treated with three-dimensional conformal radiotherapy (RT) using the Elekta Precise treatment planning system with a prescribed dose of 50-70 Gy. Dose-volume histograms were collected from three-dimensional conformal RT to determine the volume percentage of the lung received V5, V10, V20, and the normal tissue complication probability. RP was diagnosed based on computed tomography imaging, respiratory symptoms, and signs. The severity of radiation-induced lung toxicity was determined using the Lent-Soma scale defined by the Radiation Therapy Oncology Group. Plasma samples obtained before RT, during RT (at 40 Gy), and at 1 day, 1 month, and 3 months after RT were assayed for TGF-β1, IL-1β, and ACE levels by enzyme-linked immunosorbent assay.
Results: From the 63 patients, 17 (27%) developed RP, and 13 (21%) had RP of grade I and four (6%) had grade II or higher. We found plasma TGF-β1 levels were elevated in the patients that had RP when compared with the other 46 patients who did not have RP. The plasma IL-1β levels were not changed. The ACE levels were significantly lower in the 17 patients with RP compared to the 46 patients without RP throughout the RT. As expected, RP is associated with a higher dose of irradiation (>60 Gy); no other factors, including dose-volume histogram, age, sex, smoking status, location of tumor, and methods of treatment, are associated with RP.
Conclusion: Elevated plasma TGF-β1 levels can be used as a marker for RP.
Keywords: ACE; IL-1β; TGF-β1; esophageal carcinoma; radiation-induced pneumonitis.
Figures



References
-
- Rodrigues G, Lock M, D’Souza D, Yu E, Van Dyk J. Prediction of radiation pneumonitis by dose – volume histogram parameters in lung cancer – a systematic review. Radiother Oncol. 2004;71(2):127–138. - PubMed
-
- Kong FM, Ten Haken RK, Schipper MJ, et al. High-dose radiation improved local tumor control and overall survival in patients with inoperable/unresectable non-small-cell lung cancer: long-term results of a radiation dose escalation study. Int J Radiat Oncol Biol Phys. 2005;63(2):324–333. - PubMed
-
- Kong FM, Ten Haken R, Eisbruch A, Lawrence TS. Non-small cell lung cancer therapy-related pulmonary toxicity: an update on radiation pneumonitis and fibrosis. Semin Oncol. 2005;32(2 Suppl 3):S42–S54. - PubMed
-
- Kong FM, Pan C, Eisbruch A, Ten Haken RK. Physical models and simpler dosimetric descriptors of radiation late toxicity. Semin Radiat Oncol. 2007;17(2):108–120. - PubMed
-
- Kong FM, Hayman JA, Griffith KA, et al. Final toxicity results of a radiation-dose escalation study in patients with non-small-cell lung cancer (NSCLC): predictors for radiation pneumonitis and fibrosis. Int J Radiat Oncol Biol Phys. 2006;65(4):1075–1086. - PubMed
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous