A 40-bp VNTR polymorphism in the 3'-untranslated region of DAT1/SLC6A3 is associated with ADHD but not with alcoholism
- PMID: 26058807
- PMCID: PMC4472402
- DOI: 10.1186/s12993-015-0066-8
A 40-bp VNTR polymorphism in the 3'-untranslated region of DAT1/SLC6A3 is associated with ADHD but not with alcoholism
Abstract
Background: ADHD and alcoholism are psychiatric diseases with pathophysiology related to dopamine system. DAT1 belongs to the SLC6 family of transporters and is involved in the regulation of extracellular dopamine levels. A 40 bp variable number tandem repeat (VNTR) polymorphism in the 3'-untranslated region of DAT1/SLC6A3 gene was previously reported to be associated with various phenotypes involving disturbed regulation of dopaminergic neurotransmission.
Methods: A total of 1312 subjects were included and genotyped for 40 bp VNTR polymorphism of DAT1/SLC6A3 gene in this study (441 alcoholics, 400 non-alcoholic controls, 218 ADHD children and 253 non ADHD children). Using miRBase software, we have performed a computer analysis of VNTR part of DAT1 gene for presence of miRNA binding sites.
Results: We have found significant relationships between ADHD and the 40 bp VNTR polymorphisms of DAT1/SLC6A3 gene (P < 0.01). The 9/9 genotype appeared to reduce the risk of ADHD about 0.4-fold (p < 0.04). We also noted an occurrence of rare genotypes in ADHD (frequency different from controls at p < 0.01). No association between alcoholism and genotype frequencies of 40 bp VNTR polymorphism of DAT1/SLC6A3 gene has been detected.
Conclusions: We have found an association between 40 bp VNTR polymorphism of DAT1/SLC6A3 gene and ADHD in the Czech population; in a broad agreement with studies in other population samples. Furthermore, we detected rare genotypes 8/10, 7/10 and 10/11 present in ADHD boys only and identified miRNAs that should be looked at as potential novel targets in the research on ADHD.
References
-
- Mergy MA, Gowrishankat R, Davis GL, Jessen TN, Wright J, Stanwood G, et al. Genetic targeting of the amphetamine and methylphenidate dopamine transporter: On the path to an animal model of attention-deficit hyperactivity disorder. Neurochem Inter. 2014;74:56–7. doi: 10.1016/j.neuint.2013.11.009. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
