Gene set analysis: A step-by-step guide
- PMID: 26059482
- PMCID: PMC4638147
- DOI: 10.1002/ajmg.b.32328
Gene set analysis: A step-by-step guide
Abstract
To maximize the potential of genome-wide association studies, many researchers are performing secondary analyses to identify sets of genes jointly associated with the trait of interest. Although methods for gene-set analyses (GSA), also called pathway analyses, have been around for more than a decade, the field is still evolving. There are numerous algorithms available for testing the cumulative effect of multiple SNPs, yet no real consensus in the field about the best way to perform a GSA. This paper provides an overview of the factors that can affect the results of a GSA, the lessons learned from past studies, and suggestions for how to make analysis choices that are most appropriate for different types of data. © 2015 Wiley Periodicals, Inc.
Keywords: complex traits; gene set analysis; genome-wide association studies; polygenic effects.
© 2015 Wiley Periodicals, Inc.
Conflict of interest statement
Conflict of interest: None.
Figures
References
-
- Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontology: Tool for the unification of biology. Nat Genet. 2000;25(1):25–29. - PMC - PubMed
-
- Bakir-Gungor B, Egemen E, Sezerman OU. PANOGA: A web server for identification of SNP-targeted pathways from genome-wide association study data. Bioinformatics. 2014;30(9):1287–1289. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
