Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jul 2;119(26):8321-9.
doi: 10.1021/acs.jpcb.5b04170. Epub 2015 Jun 22.

Dynamics of Energy and Electron Transfer in the FMO-Reaction Center Core Complex from the Phototrophic Green Sulfur Bacterium Chlorobaculum tepidum

Affiliations

Dynamics of Energy and Electron Transfer in the FMO-Reaction Center Core Complex from the Phototrophic Green Sulfur Bacterium Chlorobaculum tepidum

Guannan He et al. J Phys Chem B. .

Abstract

The reaction center core (RCC) complex and the RCC with associated Fenna-Matthews-Olson protein (FMO-RCC) complex from the green sulfur bacterium Chlorobaculum tepidum were studied comparatively by steady-state and time-resolved fluorescence (TRF) and femtosecond time-resolved transient absorption (TA) spectroscopies. The energy transfer efficiency from the FMO to the RCC complex was calculated to be ∼40% based on the steady-state fluorescence. TRF showed that most of the FMO complexes (66%), regardless of the fact that they were physically attached to the RCC, were not able to transfer excitation energy to the reaction center. The TA spectra of the RCC complex showed a 30-38 ps lifetime component regardless of the excitation wavelengths, which is attributed to charge separation. Excitonic equilibration was shown in TA spectra of the RCC complex when excited into the BChl a Qx band at 590 nm and the Chl a Qy band at 670 nm, while excitation at 840 nm directly populated the low-energy excited state and equilibration within the excitonic BChl a manifold was not observed. The TA spectra for the FMO-RCC complex excited into the BChl a Qx band could be interpreted by a combination of the excited FMO protein and RCC complex. The FMO-RCC complex showed an additional fast kinetic component compared with the FMO protein and the RCC complex, which may be due to FMO-to-RCC energy transfer.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources