Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jun 12;348(6240):1230-4.
doi: 10.1126/science.aaa8765. Epub 2015 Jun 11.

ELECTROCHEMISTRY. High-performance transition metal-doped Pt₃Ni octahedra for oxygen reduction reaction

Affiliations

ELECTROCHEMISTRY. High-performance transition metal-doped Pt₃Ni octahedra for oxygen reduction reaction

Xiaoqing Huang et al. Science. .

Abstract

Bimetallic platinum-nickel (Pt-Ni) nanostructures represent an emerging class of electrocatalysts for oxygen reduction reaction (ORR) in fuel cells, but practical applications have been limited by catalytic activity and durability. We surface-doped Pt3Ni octahedra supported on carbon with transition metals, termed M-Pt3Ni/C, where M is vanadium, chromium, manganese, iron, cobalt, molybdenum (Mo), tungsten, or rhenium. The Mo-Pt3Ni/C showed the best ORR performance, with a specific activity of 10.3 mA/cm(2) and mass activity of 6.98 A/mg(Pt), which are 81- and 73-fold enhancements compared with the commercial Pt/C catalyst (0.127 mA/cm(2) and 0.096 A/mg(Pt)). Theoretical calculations suggest that Mo prefers subsurface positions near the particle edges in vacuum and surface vertex/edge sites in oxidizing conditions, where it enhances both the performance and the stability of the Pt3Ni catalyst.

PubMed Disclaimer

Publication types

LinkOut - more resources