Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Jun 10;6(5):715-25.
doi: 10.4239/wjd.v6.i5.715.

Recent progress in the genetics of diabetic microvascular complications

Affiliations
Review

Recent progress in the genetics of diabetic microvascular complications

Yi-Cheng Chang et al. World J Diabetes. .

Abstract

Diabetic complications including diabetic nephropathy, retinopathy, and neuropathy are as major causes of morbidity and mortality in diabetes individuals worldwide and current therapies are still unsatisfactory. One of the reasons for failure to develop effective treatment is the lack of fundamental understanding for underlying mechanisms. Genetic studies are powerful tools to dissect disease mechanism. The heritability (h (2)) was estimated to be 0.3-0.44 for diabetic nephropathy and 0.25-0.50 for diabetic retinopathy respectively. Previous linkage studies for diabetic nephropathy have identified overlapped linkage regions in 1q43-44, 3q21-23, 3q26, 10p12-15, 18q22-23, 19q13, 22q11-12.3 in multiple ethnic groups. Genome-wide association studies (GWAS) of diabetic nephropathy have been conducted in several populations. However, most of the identified risk loci could not be replicated by independent studies with a few exceptions including those in ELMO1, FRMD3, CARS, MYO16/IRS2, and APOL3-MYH9 genes. Functional studies of these genes revealed the involvement of cytoskeleton reorganization (especially non-muscle type myosin), phagocytosis of apoptotic cells, fibroblast migration, insulin signaling, and epithelial clonal expansion in the pathogenesis of diabetic nephropathy. Linkage analyses of diabetic retinopathy overlapped only in 1q36 region and current results from GWAS for diabetic retinopathy are inconsistent. Conclusive results from genetic studies for diabetic neuropathy are lacking. For now, small sample sizes, confounding by population stratification, different phenotype definitions between studies, ethnic-specific associations, the influence of environmental factors, and the possible contribution of rare variants may explain the inconsistencies between studies.

Keywords: Diabetes; Microvascular complications; Nephropathy; Neuropathy; Retionopathy.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Genetic risk loci for diabetic nephropathy, retinopathy, and neuropathy indentified through genome-wide linkage (vertical bar) and association scans (horizontal bar). GWAS: Genome-wide association study; Chr: Chromosome.
Figure 2
Figure 2
Possible molecular mechanisms. Possible molecular mechanisms by which ELMO1 (A), IRS2 (B), and MYH9 (C) regulate diabetic nephropathy. TRIO: Triple functional domain (PTPRF interacting); RhoG: Ras homolog family member G; GDP: Guanosine diphosphate; GTP: Guanosine triphosphate; MMP: Matrix metalloproteinases; Crk II: V-Crk Avian Sarcoma Virus CT10 Oncogene Homolog II; TGF-β: Transforming growth factor beta; AKT: Protein kinase B; mLSTS: Mammalian lethal with SEC13 protein 8; mTOR: Mammalian target of rapamycin; mTORC2: Mammalian target of rapamycin complex 2; mSin1: Mammalian SAPK interacting protein; PKC: Protein kinase C; SGK1: Serum- and glucocorticoid-induced kinase 1.

References

    1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–1053. - PubMed
    1. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615–1625. - PubMed
    1. Shamsi HN, Masaud JS, Ghazi NG. Diabetic macular edema: New promising therapies. World J Diabetes. 2013;4:324–338. - PMC - PubMed
    1. Gosmanov AR, Wall BM, Gosmanova EO. Diagnosis and treatment of diabetic kidney disease. Am J Med Sci. 2014;347:406–413. - PubMed
    1. Spallone V, Lacerenza M, Rossi A, Sicuteri R, Marchettini P. Painful diabetic polyneuropathy: approach to diagnosis and management. Clin J Pain. 2012;28:726–743. - PubMed