Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Oct 1:455:226-35.
doi: 10.1016/j.jcis.2015.05.038. Epub 2015 Jun 3.

The retention of liquid by columnar nanostructured surfaces during quartz crystal microbalance measurements and the effects of adsorption thereon

Affiliations

The retention of liquid by columnar nanostructured surfaces during quartz crystal microbalance measurements and the effects of adsorption thereon

Keith B Rodenhausen et al. J Colloid Interface Sci. .

Abstract

Hypothesis: A surface comprising spatially coherent columnar nanostructures is expected to retain intercolumnar liquid during a quartz crystal microbalance measurement due to the surface structure. Part of the liquid retained by the nanostructures may then be displaced by adsorbate.

Experiments: Slanted columnar nanostructure thin films were designed to vary in height but remain structurally similar, fabricated by glancing angle deposition, and characterized by generalized ellipsometry. A frequency overtone analysis, introduced here, was applied to analyze quartz crystal microbalance data for the exchange of isotope liquids over the nanostructured surfaces and determine the areal inertial mass of structure-retained liquid. The adsorption of cetyltrimethylammonium bromide onto nanostructures was investigated by simultaneous quartz crystal microbalance and generalized ellipsometry measurements.

Findings: The areal inertial mass of structure-retained liquid varies linearly with nanostructure height. The proportionality constant is a function of the surface topography and agrees with the generalized ellipsometry-determined nanostructure film porosity, implying that nearly all intercolumnar liquid is retained. We report that for adsorption processes within porous nanostructured films, the quartz crystal microbalance is sensitive not to the combined areal inertial mass of adsorbate and retained liquid but rather to the density difference between adsorbate and liquid due to the volume exchange within the nanostructure film.

Keywords: Adsorption; Generalized ellipsometry; Nanostructured surface; Porosity; Quartz crystal microbalance; Solid–liquid interface.

PubMed Disclaimer

LinkOut - more resources