Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Jul:414:111-24.
doi: 10.1113/jphysiol.1989.sp017679.

Single inwardly rectifying potassium channels in cultured muscle cells from rat and mouse

Affiliations

Single inwardly rectifying potassium channels in cultured muscle cells from rat and mouse

H Matsuda et al. J Physiol. 1989 Jul.

Abstract

1. Inward unitary currents through inwardly rectifying K+ channels of myotubes derived from newborn rats or from a murine, clonal myoblast cell line were studied in the cell-attached configuration. Open-closed transitions of the channel were observed in the absence of blocking ions. 2. The single-channel conductance was 26.3 +/- 2.9 pS (mean + S.D., n = 14) with 150 mM-K+ pipette solution at room temperature (19-22 degrees C). The channel showed substates of conductance in addition to the main conductance state. A channel with a smaller conductance (8.9 +/- 2.6 pS, n = 4) was also but less frequently observed. 3. The probability of the channel being open is weakly voltage dependent: it decreased from 0.94 to 0.84 as the membrane was hyperpolarized from the resting potential (RP) + 20 mV to RP - 50 mV. 4. The lifetimes of the openings were distributed according to a single exponential. At least three exponentials were required to fit the frequency histogram of the lifetimes of all closed states. The mean open time showed a weak voltage dependence, while the mean closed times had little voltage dependence. 5. In the presence of external Na+, the open probability decreased from 0.89 to 0.43 and the mean open time decreased from 203 to 28 ms (40 mM-K+, 200 mM-Na+ pipette solution) when the patch membrane was hyperpolarized from RP - 40 mV to RP - 110 mV. The mean closed times were not different from those with 150 mM-K+, Na+-free pipette solution and showed little voltage dependence. 6. It is suggested that inactivation of the macroscopic inward currents during hyperpolarization results mainly from a voltage-dependent block by Na+ with relatively slow kinetics.

PubMed Disclaimer

References

    1. Pflugers Arch. 1981 Aug;391(2):85-100 - PubMed
    1. J Physiol. 1979 Sep;294:497-520 - PubMed
    1. J Physiol. 1982 Oct;331:311-31 - PubMed
    1. J Physiol. 1972 Aug;225(1):33-56 - PubMed
    1. J Physiol. 1985 Feb;359:269-91 - PubMed

Publication types

LinkOut - more resources