Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 May 26:6:110.
doi: 10.3389/fneur.2015.00110. eCollection 2015.

Blood Biomarkers in Moderate-To-Severe Traumatic Brain Injury: Potential Utility of a Multi-Marker Approach in Characterizing Outcome

Affiliations

Blood Biomarkers in Moderate-To-Severe Traumatic Brain Injury: Potential Utility of a Multi-Marker Approach in Characterizing Outcome

Alex P Di Battista et al. Front Neurol. .

Abstract

Background: Blood biomarkers are valuable tools for elucidating complex cellular and molecular mechanisms underlying traumatic brain injury (TBI). Profiling distinct classes of biomarkers could aid in the identification and characterization of initial injury and secondary pathological processes. This study characterized the prognostic performance of a recently developed multi-marker panel of circulating biomarkers that reflect specific pathogenic mechanisms including neuroinflammation, oxidative damage, and neuroregeneration, in moderate-to-severe TBI patients.

Materials and methods: Peripheral blood was drawn from 85 isolated TBI patients (n = 60 severe, n = 25 moderate) at hospital admission, 6-, 12-, and 24-h post-injury. Mortality and neurological outcome were assessed using the extended Glasgow Outcome Scale. A multiplex platform was designed on MULTI-SPOT(®) plates to simultaneously analyze human plasma levels of s100 calcium binding protein beta (s100B), glial fibrillary acidic protein (GFAP), neuron specific enolase (NSE), brain-derived neurotrophic factor (BDNF), monocyte chemoattractant protein (MCP)-1, intercellular adhesion molecule (ICAM)-5, and peroxiredoxin (PRDX)-6. Multivariable logistic regression and area under the receiver-operating characteristic curve (AUC) were used to evaluate both individual and combined predictive abilities of these markers for 6-month neurological outcome and mortality after TBI.

Results: Unfavorable neurological outcome was associated with elevations in s100B, GFAP, and MCP-1. Mortality was related to differences in six of the seven markers analyzed. Combined admission concentrations of s100B, GFAP, and MCP-1 were able to discriminate favorable versus unfavorable outcome (AUC = 0.83), and survival versus death (AUC = 0.87), although not significantly better than s100B alone (AUC = 0.82 and 0.86, respectively).

Conclusion: The multi-marker panel of TBI-related biomarkers performed well in discriminating unfavorable and favorable outcomes in the acute period after moderate-to-severe TBI. However, the combination of these biomarkers did not outperform s100B alone.

Keywords: BDNF; GFAP; ICAM-5; MCP-1; NSE; PRDX-6; s100B.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Plasma concentrations of neuroinjury biomarkers in combined moderate-to-severe TBI patients within the first 24 h of hospital admission, stratified according to 6-month neurological outcome using the extended Glasgow outcome scale (GOSE) score. Favorable outcome = GOSE 5–8, n = 35; Unfavorable outcome = GOSE 1–4, n = 50. s100 calcium binding protein (A), glial fibrillary acidic protein (B), neuron specific enolase (C), brain-derived neurotrophic factor (D), monocyte chemoattractant protein-1 (E), intercellular adhesion molecule-5 (F), peroxiredoxin-6 (G). Sample sizes may vary. *p ≤ 0.05 by Student’s t-test or Mann–Whitney U, where appropriate, versus patients with a favorable outcome.
Figure 2
Figure 2
Plasma concentrations of neuroinjury biomarkers in combined moderate-to-severe TBI patients within the first 24 h of hospital admission, stratified by patients who lived versus died. Lived, n = 61; Died, n = 24. s100 calcium binding protein (A), glial fibrillary acidic protein (B), neuron specific enolase (C), brain-derived neurotrophic factor (D), monocyte chemoattractant protein-1 (E), intercellular adhesion molecule-5 (F), peroxiredoxin-6 (G). Sample sizes may vary. *p ≤ 0.05 by Student’s t-test or Mann–Whitney U, where appropriate, versus patients who survived.
Figure 3
Figure 3
ROC curves of neuroinjury biomarkers used to discriminate unfavorable versus favorable 6-month neurological outcome in TBI patients. A combined AUC consisting of s100B, GFAP, and MCP-1 was not statistically better than s100B alone in discriminating unfavorable from favorable outcome by chi-squared.
Figure 4
Figure 4
ROC curves of neuroinjury markers used to discriminate death from survival in TBI patients. A combined AUC consisting of s100B, GFAP, and MCP-1 was not statistically better than s100B alone in discriminating death from survival by chi-squared.

References

    1. McKee AC, Daneshvar DH. The neuropathology of traumatic brain injury. Handb Clin Neurol (2015) 127:45–66.10.1016/B978-0-444-52892-6.00004-0 - DOI - PMC - PubMed
    1. Gaddam SSK, Buell T, Robertson CS. Systemic manifestations of traumatic brain injury. Handb Clin Neurol (2015) 127:205–18.10.1016/B978-0-444-52892-6.00014-3 - DOI - PubMed
    1. Papa L, Robertson CS, Wang KKW, Brophy GM, Hannay HJ, Heaton S, et al. Biomarkers improve clinical outcome predictors of mortality following non-penetrating severe traumatic brain injury. Neurocrit Care (2015) 22:52–64.10.1007/s12028-014-0028-2 - DOI - PubMed
    1. Mondello S, Hayes RL. Biomarkers. Handb Clin Neurol (2015) 127:245–65.10.1016/B978-0-444-52892-6.00016-7 - DOI - PubMed
    1. Wang KKW, Moghieb A, Yang Z, Zhang Z. Systems biomarkers as acute diagnostics and chronic monitoring tools for traumatic brain injury. In: Proc. SPIE 8723, Sensing Technologies for Global Health, Military Medicine, and Environmental Monitoring III, Vol. 87230O (2013).10.1117/12.2020030 - DOI