Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Jun 14;21(22):6769-84.
doi: 10.3748/wjg.v21.i22.6769.

Portal vein thrombosis in cirrhosis: Controversies and latest developments

Affiliations
Review

Portal vein thrombosis in cirrhosis: Controversies and latest developments

Damian J Harding et al. World J Gastroenterol. .

Abstract

Portal vein thrombosis (PVT) is encountered in liver cirrhosis, particularly in advanced disease. It has been a feared complication of cirrhosis, attributed to significant worsening of liver disease, poorer clinical outcomes and potential inoperability at liver transplantation; also catastrophic events such as acute intestinal ischaemia. Optimal management of PVT has not yet been addressed in any consensus publication. We review current literature on PVT in cirrhosis; its prevalence, pathophysiology, diagnosis, impact on the natural history of cirrhosis and liver transplantation, and management. Studies were identified by a search strategy using MEDLINE and Google Scholar. The incidence of PVT increases with increasing severity of liver disease: less than 1% in well-compensated cirrhosis, 7.4%-16% in advanced cirrhosis. Prevalence in patients undergoing liver transplantation is 5%-16%. PVT frequently regresses instead of uniform thrombus progression. PVT is not associated with increased risk of mortality. Optimal management has not been addressed in any consensus publication. We propose areas for future research to address unresolved clinical questions.

Keywords: Anticoagulation; Liver cirrhosis; Portal vein thrombosis; Transjugular intrahepatic portosystemic stent-shunt.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Yerdel’s Classfication of portal vein thrombosis[15]. A: Grade I portal vein thrombosis. Partial portal vein thrombosis (< 50% lumen) with or without minimal extension in to the superior mesenteric vein (SMV); B: Grade II portal vein thrombosis; > 50% occlusion with or without minimal extension into the SMV; C: Complete thrombosis of both portal vein and proximal SMV. Distal SMV is open; D: Complete thrombosis of portal vein, proximal and distal SMV.

References

    1. Schmidt S, Demartines N, Soler L, Schnyder P, Denys A. Portal vein normal anatomy and variants: implication for liver surgery and portal vein embolization. Semin Intervent Radiol. 2008;25:86–91. - PMC - PubMed
    1. Shimada T, Maruyama H, Kondo T, Sekimoto T, Takahashi M, Motoyama T, Ogasawara S, Suzuki E, Ooka Y, Tawada A, et al. Clinical features and natural history of portal vein thrombosis after radiofrequency ablation for hepatocellular carcinoma in Japan. Hepatol Int. 2013;7:1030–1039. - PubMed
    1. Matsumoto K, Yamao K, Ohashi K, Watanabe Y, Sawaki A, Nakamura T, Matsuura A, Suzuki T, Fukutomi A, Baba T, et al. Acute portal vein thrombosis after EUS-guided FNA of pancreatic cancer: case report. Gastrointest Endosc. 2003;57:269–271. - PubMed
    1. Yadav S, Dutta AK, Sarin SK. Do umbilical vein catheterization and sepsis lead to portal vein thrombosis? A prospective, clinical, and sonographic evaluation. J Pediatr Gastroenterol Nutr. 1993;17:392–396. - PubMed
    1. Nery F, Chevret S, Condat B, de Raucourt E, Boudaoud L, Rautou PE, Plessier A, Roulot D, Chaffaut C, Bourcier V, et al. Causes and consequences of portal vein thrombosis in 1,243 patients with cirrhosis: results of a longitudinal study. Hepatology. 2015;61:660–667. - PubMed

MeSH terms