Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Feb 25;251(4):962-7.

Calcium transport driven by a proton gradient and inverted membrane vesicles of Escherichia coli

  • PMID: 2608
Free article

Calcium transport driven by a proton gradient and inverted membrane vesicles of Escherichia coli

T Tsuchiya et al. J Biol Chem. .
Free article

Abstract

Calcium transport into inverted vesicles of Escherichia coli was observed to occur without an exogenous energy source when an artificial proton gradient was used. The orientation of the proton gradient was acid inside and alkaline outside. Either phosphate or oxalate was necessary for transport, as was found for respiratory-driven or ATP-driven uptake (Tsuchiya, T., and Rosen, B.P. (1975) J. Biol. Chem. 250, 7687-7692). Phosphate accumulation was found to occur in conjunction with calcium accumulation. Calcium transport driven by an artificial proton gradient was stimulated by dicyclohexylcarbodiimide, an inhibitor of the Mg2+ATPase (EC 3.6.1.3). Valinomycin, which catalyzes electrogenic potassium movement, stimulated calcium accumulation, while nigericin, which catalyzes electroneutral exchange of potassium and protons, inhibited both artificial proton gradient-driven transport and respiratory-driven transport. Other properties of the proton gradient-driven system and the previously reported energy-linked calcium transport system are similar, indicating that calcium is transported by the same carrier whether energy is supplied through an artificial proton gradient or an energized membrane state. These results suggest the existence of a calcium/proton antiport.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources