Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Feb;2(1):CM-0010-2012.
doi: 10.1128/microbiolspec.CM-0010-2012.

Biodiversity of the Surface Microbial Consortia from Limburger, Reblochon, Livarot, Tilsit, and Gubbeen Cheeses

Affiliations
Free article

Biodiversity of the Surface Microbial Consortia from Limburger, Reblochon, Livarot, Tilsit, and Gubbeen Cheeses

Timothy M Cogan et al. Microbiol Spectr. 2014 Feb.
Free article

Abstract

Comprehensive collaborative studies from our laboratories reveal the extensive biodiversity of the microflora of the surfaces of smear-ripened cheeses. Two thousand five hundred ninety-seven strains of bacteria and 2,446 strains of yeasts from the surface of the smear-ripened cheeses Limburger, Reblochon, Livarot, Tilsit, and Gubbeen, isolated at three or four times during ripening, were identified; 55 species of bacteria and 30 species of yeast were found. The microfloras of the five cheeses showed many similarities but also many differences and interbatch variation. Very few of the commercial smear microorganisms, deliberately inoculated onto the cheese surface, were reisolated and then mainly from the initial stages of ripening, implying that smear cheese production units must have an adventitious "house" flora. Limburger cheese had the simplest microflora, containing two yeasts, Debaryomyces hansenii and Geotrichum candidum, and two bacteria, Arthrobacter arilaitensis and Brevibacterium aurantiacum. The microflora of Livarot was the most complicated, comprising 10 yeasts and 38 bacteria, including many gram-negative organisms. Reblochon also had a very diverse microflora containing 8 yeasts and 13 bacteria (excluding gram-negative organisms which were not identified), while Gubbeen had 7 yeasts and 18 bacteria and Tilsit had 5 yeasts and 9 bacteria. D. hansenii was by far the dominant yeast, followed in order by G. candidum, Candida catenulata, and Kluyveromyces lactis. B. aurantiacum was the dominant bacterium and was found in every batch of the 5 cheeses. The next most common bacteria, in order, were Staphylococcus saprophyticus, A. arilaitensis, Corynebacterium casei, Corynebacterium variabile, and Microbacterium gubbeenense. S. saprophyticus was mainly found in Gubbeen, and A. arilaitensis was found in all cheeses but not in every batch. C. casei was found in most batches of Reblochon, Livarot, Tilsit, and Gubbeen. C. variabile was found in all batches of Gubbeen and Reblochon but in only one batch of Tilsit and in no batch of Limburger or Livarot. Other bacteria were isolated in low numbers from each of the cheeses, suggesting that each of the 5 cheeses has a unique microflora. In Gubbeen cheese, several different strains of the dominant bacteria were present, as determined by pulsed-field gel electrophoresis, and many of the less common bacteria were present as single clones. The culture-independent method, denaturing gradient gel electrophoresis, resulted in identification of several bacteria which were not found by the culture-dependent (isolation and rep-PCR identification) method. It was thus a useful complementary technique to identify other bacteria in the cheeses. The gross composition, the rate of increase in pH, and the indices of proteolysis were different in most of the cheeses.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources