In vitro selection of ceftazidime-avibactam resistance in Enterobacteriaceae with KPC-3 carbapenemase
- PMID: 26100712
- PMCID: PMC4538485
- DOI: 10.1128/AAC.00678-15
In vitro selection of ceftazidime-avibactam resistance in Enterobacteriaceae with KPC-3 carbapenemase
Abstract
Ceftazidime-avibactam is active against most Enterobacteriaceae isolates with KPC carbapenemases. We investigated whether this activity could be compromised by mutation. Single-step and multistep selections were attempted using ceftazidime-avibactam (avibactam fixed at 1 or 4 μg/ml) versus two strains each of Enterobacter cloacae and Klebsiella pneumoniae, all with the KPC-3 enzyme. Mutant bla KPC alleles were sequenced, and their parentage was confirmed by typing. Ceftazidime-avibactam selected mutants at up to 16× MIC, with frequencies of ca. 10(-9). This contrasted with previous experience for ceftaroline-avibactam, where mutant frequencies under similar conditions were <10(-9). The MICs of ceftazidime with 1 μg/ml avibactam for the ceftazidime-avibactam-selected mutants rose from 1 to 8 μg/ml to 16 to >256 μg/ml and those of ceftazidime with 4 μg/ml avibactam from 0.25 to 1 μg/ml to 4 to 128 μg/ml; ceftaroline-avibactam MICs rose less, typically from 0.5 to 1 μg/ml to 1 to 8 μg/ml. The MICs of carbapenems and cephalosporins except ceftazidime and piperacillin-tazobactam were reduced for many mutants. Sequencing of blaKPC revealed point and insertion changes in 12/13 mutants investigated, representing all four parents; one mutant lacked bla KPC changes and possibly had reduced permeability. Amino acid changes commonly involved Ω loop alterations or 1 to 6 amino acid insertions immediately C-terminal to this loop. The most frequent change, seen in four mutants from three strains, was Asp179Tyr, replacing a residue that ordinarily forms a salt bridge to stabilize the Ω loop. Since ceftaroline-avibactam was less affected than ceftazidime-avibactam, we postulate that these mutations increase ceftazidimase specificity rather than conferring avibactam resistance. The clinical relevance remains uncertain.
Copyright © 2015, American Society for Microbiology. All Rights Reserved.
References
-
- Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, Cornaglia G, Garau J, Gniadkowski M, Hayden MK, Kumarasamy K, Livermore DM, Maya JJ, Nordmann P, Patel JB, Paterson DL, Pitout J, Villegas MV, Wang H, Woodford N, Quinn JP. 2013. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 13:785–796. doi:10.1016/S1473-3099(13)70190-7. - DOI - PMC - PubMed
-
- Woodford N, Pike R, Meunier D, Loy R, Hill R, Hopkins KL. 2014. In vitro activity of temocillin against multidrug-resistant clinical isolates of Escherichia coli, Klebsiella spp. and Enterobacter spp, and evaluation of high-level temocillin resistance as a diagnostic marker for OXA-48 carbapenemase. J Antimicrob Chemother 69:564–567. doi:10.1093/jac/dkt383. - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
