Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Dec;257(6 Pt 1):C1069-79.
doi: 10.1152/ajpcell.1989.257.6.C1069.

Effects of cysteine protease inhibitors on rabbit cathepsin D maturation

Affiliations

Effects of cysteine protease inhibitors on rabbit cathepsin D maturation

A M Samarel et al. Am J Physiol. 1989 Dec.

Abstract

To examine the effects of cysteine protease inhibitors on cathepsin D intracellular transport, proteolytic processing, and secretion, primary cultures of rabbit cardiac fibroblasts were grown to confluence and exposed (24 h) to media containing leupeptin (0-10 mM), E 64 (0-10 mM), or chloroquine (0-50 microM). Cathepsin D maturation was then evaluated in pulse-chase biosynthetic labeling experiments. None of the three agents affected the charge modification of procathepsin D (Mr 53,000) within the Golgi apparatus. However, all three agents interfered with the subsequent proteolytic processing of procathepsin D isoforms to active cathepsin D (Mr 48,000). Both leupeptin and E 64 caused the intracellular accumulation of large amounts of a Mr 51,000 processing intermediate (not detectable in control fibroblasts). Trace amounts of this intermediate were also detected in chloroquine-treated cells. Combined activity assay and radioimmunoassay of cell lysates indicated that this partially processed form of cathepsin D possessed proteolytic activity. Whereas low medium concentrations of leupeptin (10-100 microM) but not E 64 appeared to stimulate procathepsin D secretion, neither agent appeared to have a major effect on the rate of proenzyme secretion at doses required to inhibit proteolytic maturation (1-10 mM). Furthermore, pretreatment of cells with 10 mM leupeptin appeared only to delay, but not prevent, the intracellular transport of cathepsin D to lysosomes. In contrast, chloroquine increased procathepsin D secretion in a dose-dependent manner, diverting the majority of newly synthesized procathepsin D from the intracellular protease(s) responsible for proteolytic processing. These results suggest that cysteine proteases participate in the proteolytic maturation of procathepsin D during the transport of newly synthesized enzyme to lysosomes, but cysteine protease-mediated proteolytic processing is not required for cathepsin D activation or lysosomal translocation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources