Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jul 8;15(7):4553-6.
doi: 10.1021/acs.nanolett.5b01130. Epub 2015 Jun 25.

Negative Capacitance in Organic/Ferroelectric Capacitor to Implement Steep Switching MOS Devices

Affiliations

Negative Capacitance in Organic/Ferroelectric Capacitor to Implement Steep Switching MOS Devices

Jaesung Jo et al. Nano Lett. .

Abstract

Because of the "Boltzmann tyranny" (i.e., the nonscalability of thermal voltage), a certain minimum gate voltage in metal-oxide-semiconductor (MOS) devices is required for a 10-fold increase in drain-to-source current. The subthreshold slope (SS) in MOS devices is, at best, 60 mV/decade at 300 K. Negative capacitance in organic/ferroelectric materials is proposed in order to address this physical limitation in MOS technology. Here, we experimentally demonstrate the steep switching behavior of a MOS device-that is, SS ∼ 18 mV/decade (much less than 60 mV/decade) at 300 K-by taking advantage of negative capacitance in a MOS gate stack. This negative capacitance, originating from the dynamics of the stored energy in a phase transition of a ferroelectric material, can achieve the step-up conversion of internal voltage (i.e., internal voltage amplification in a MOS device). With the aid of a series-connected negative capacitor as an assistive device, the surface potential in the MOS device becomes higher than the applied gate voltage, so that a SS of 18 mV/decade at 300 K is reliably observed.

Keywords: ferroelectrics; metal−oxide−semiconductor field-effect transistor (MOSFET); negative capacitance; steep switching.

PubMed Disclaimer

Publication types

LinkOut - more resources