Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jun 25;10(6):e0130998.
doi: 10.1371/journal.pone.0130998. eCollection 2015.

Orientation of DNA Minicircles Balances Density and Topological Complexity in Kinetoplast DNA

Affiliations

Orientation of DNA Minicircles Balances Density and Topological Complexity in Kinetoplast DNA

Yuanan Diao et al. PLoS One. .

Abstract

Kinetoplast DNA (kDNA), a unique mitochondrial structure common to trypanosomatid parasites, contains thousands of DNA minicircles that are densely packed and can be topologically linked into a chain mail-like network. Experimental data indicate that every minicircle in the network is, on average, singly linked to three other minicircles (i.e., has mean valence 3) before replication and to six minicircles in the late stages of replication. The biophysical factors that determine the topology of the network and its changes during the cell cycle remain unknown. Using a mathematical modeling approach, we previously showed that volume confinement alone can drive the formation of the network and that it induces a linear relationship between mean valence and minicircle density. Our modeling also predicted a minicircle valence two orders of magnitude greater than that observed in kDNA. To determine the factors that contribute to this discrepancy we systematically analyzed the relationship between the topological properties of the network (i.e., minicircle density and mean valence) and its biophysical properties such as DNA bending, electrostatic repulsion, and minicircle relative position and orientation. Significantly, our results showed that most of the discrepancy between the theoretical and experimental observations can be accounted for by the orientation of the minicircles with volume exclusion due to electrostatic interactions and DNA bending playing smaller roles. Our results are in agreement with the three dimensional kDNA organization model, initially proposed by Delain and Riou, in which minicircles are oriented almost perpendicular to the horizontal plane of the kDNA disk. We suggest that while minicircle confinement drives the formation of kDNA networks, it is minicircle orientation that regulates the topological complexity of the network.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Hopf Links and Models proposed to analyze the topological properties of the minicircle network.
A: A Hopf link; B: A grid of minicircles whose orientation has been biased. Volume effects are not considered and minicircle thickness is shown to help trace the trajectory of each minicircle; C: A grid of minicircles represented by freely jointed closed chains to study the effects of DNA bending; D: A grid of minicircles, represented by octagonal polygons, to study the effects of volume exclusion due to electrostatic interactions.
Fig 2
Fig 2. Estimation of the mean minicircle valence as a function of the minicircle density for biologically significant radii.
The sample size for each data point is 105 and the sizes of the error bars are less than the sizes of the plotted data points.
Fig 3
Fig 3. Relationship between the linking probability (LP) of rigid (Geo Circ) and freely jointed minicircles (ERP) with volume exclusion.
Fig 4
Fig 4. Estimated average saturation density for various restriction angles.
Each data point in the figures is based on samples of sample size 1000 and minicircle grids of dimension 1000 × 1000. The 95% standard error bars are less than.0005 in all cases.

Similar articles

Cited by

References

    1. World Health Organization. Research Priorities for Chagas Disease, Human African Trypanosomiasis and Leishmaniasis. World Health Organ Tech Rep Ser. 2012; 975: v–xii. - PubMed
    1. Stuart K, Brun R, Croft S, Fairlamb A, Gurtler RE, McKerrow J et al. Kinetoplastids: related protozoan pathogens, different disease. J Clin Invest. 2008; 118: 1301–1310. 10.1172/JCI33945 - DOI - PMC - PubMed
    1. Benne R, Van den Burg J, Brakenhoff JP, Sloof P, Van Boom JH, Tromp MC. Major transcript of the frameshifted coxii gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell. 1986; 46: 819–826. 10.1016/0092-8674(86)90063-2 - DOI - PubMed
    1. Lukes J, Guilbride DL, Votypka J, Zíkova A, Benne R, Englund PT. Kinetoplast DNA network: Evolution of an Improbable Structure. Euk Cell. 2002; 1: 495–502. 10.1128/EC.1.4.495-502.2002 - DOI - PMC - PubMed
    1. Simpson L, Sbicego S, Aphasizhev R. Uridine insertion/deletion RNA editing in trypanosome mitochondria: a complex business. RNA. 2003; 9: 265–276. 10.1261/rna.2178403 - DOI - PMC - PubMed

Publication types

MeSH terms