Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jun 25;10(6):e0130776.
doi: 10.1371/journal.pone.0130776. eCollection 2015.

Toward Clinically Compatible Phase-Contrast Mammography

Affiliations

Toward Clinically Compatible Phase-Contrast Mammography

Kai Scherer et al. PLoS One. .

Abstract

Phase-contrast mammography using laboratory X-ray sources is a promising approach to overcome the relatively low sensitivity and specificity of clinical, absorption-based screening. Current research is mostly centered on identifying potential diagnostic benefits arising from phase-contrast and dark-field mammography and benchmarking the latter with conventional state-of-the-art imaging methods. So far, little effort has been made to adjust this novel imaging technique to clinical needs. In this article, we address the key points for a successful implementation to a clinical routine in the near future and present the very first dose-compatible and rapid scan-time phase-contrast mammograms of both a freshly dissected, cancer-bearing mastectomy specimen and a mammographic accreditation phantom.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Laboratory X-ray phase-contrast mammography setup.
(A) Longitudinal view of the revised, laboratory X-ray phase-contrast mammography setup with a dose-saving arrangement of phase grating and sample holder. A compact system length, rotating X-ray anode and conventional flat panel detector met the design criteria of clinical mammography systems. (B) Close-up view in the direction of the X-ray beam showing the phase-stepping instruments and breast equivalent incorporated for flat-field measurements. The combination of high-load actuator and nano-converter enables image acquisition times within 12 seconds.
Fig 2
Fig 2. Clinically compatible phase-contrast mammograms of a freshly dissected, cancerous mastectomy sample and the mammographic accreditation phantom Gammex 156.
Clinical ex-vivo mammography at 28 kVp, 86 mAs and 0.94 mGy mean glandular dose (Rhodium filter) (A), grating-based absorption (B), differential phase (C) and dark-field mammography (D) at 40 kVp, 70 mA and 2.2 mGy mean glandular dose of a freshly dissected mastectomy sample. Both absorption images are rated equivalent with respect to image quality and detection quality. Inlays show magnified view of the cancerous and micro-calcified tissue volume, with a superior contrast-to-noise ratio in the dark-field (10.6) in comparison to absorption channel (5.7). Notice that soft-tissue components of the tumor are exclusively detected within the dark-field signal, as indicated by the dashed blue line. Clinical mammography at 28 kVp, 159 mAs and 1.62 mGy mean glandular dose (Rhodium filter) (E), grating-based absorption (F), differential phase (G) and dark-field mammography (H) at 40 kVp, 70 mA and 2.07 mGy mean glandular dose of the mammographic accreditation phantom Gammex 156 (Gammex Inc., Middleton). The grating-based absorption image meets the standard criteria of clinical image quality, by resolving 4 of a minimum of 4 fibrils (#1–4), 3 of a minimum of 3 groups of simulated micro-calcifications (#7–9) and 4 of a minimum of 3 tumor masses (#12–15). The differential phase and dark-field channel provide complementary information by revealing an additional 5th fibril (#5) and 5th tumor mass (#16) as indicated by arrows.

References

    1. Pfeiffer F, Weitkamp T, Bunk O, David C. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat Phys. 2006; 2: 258–61.
    1. Scherer K, Birnbacher L, Chabior M, Herzen J, Mayr D, Grandl S, et al. Bi-directional x-ray phase-contrast mammography. PloS one. 2014; 9: e93502 10.1371/journal.pone.0093502 - DOI - PMC - PubMed
    1. Stampanoni M, Wang Z, Thuring T, David C, Roessl E, Trippel M, et al. The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography. Invest Rad. 2011; 46: 801–6. 10.1097/RLI.0b013e31822a585f - DOI - PubMed
    1. Hauser N, Wang Z, Kubik-Huch RA, Trippel M, Singer G, Hohl MK, et al. A study on mastectomy samples to evaluate breast imaging quality and potential clinical relevance of differential phase contrast mammography. Invest Rad. 2014; 49: 131–7. - PubMed
    1. Michel T, Rieger J, Anton G, Bayer F, Beckmann MW, Durst J, et al. On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography. Phys Med Biol. 2013; 58: 2713–32. 10.1088/0031-9155/58/8/2713 - DOI - PubMed

Publication types

MeSH terms