Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Dec 12;28(25):9766-72.
doi: 10.1021/bi00451a033.

Ordered synthesis and mobilization of glycogen in the perfused heart

Affiliations

Ordered synthesis and mobilization of glycogen in the perfused heart

J R Brainard et al. Biochemistry. .

Abstract

The molecular order of synthesis and mobilization of glycogen in the perfused heart was studied by 13C NMR. By varying the glucose isotopomer ([1-13C]glucose or [2-13C]glucose) supplied to the heart, glycogen synthesized at different times during the perfusion was labeled at different carbon sites. Subsequently, the in situ mobilization of glycogen during ischemia was observed by detection of labeled lactate derived from glycolysis of the glucosyl monomers. When [1-13C]glucose was given initially in the perfusion and [2-13C]glucose was given second, [2-13C]lactate was detected first during ischemia and [3-13C]lactate second. This result, and the equivalent result when the glucose labels were given in the reverse order, demonstrates that glycogen synthesis and mobilization are ordered in the heart, where glycogen is found morphologically only as beta particles. Previous studies of glycogen synthesis and mobilization in liver and adipocytes [Devos, P., & Hers, H.-G. (1979) Eur. J. Biochem. 99, 161-167; Devos, P., & Hers, H.-G. (1980) Biochem. Biophys. Res. Commun. 95, 1031-1036] have suggested that the organization of beta particles into alpha particles was partially responsible for ordered synthesis and mobilization. The observations reported here for cardiac glycogen suggest that another mechanism is responsible. In addition to examining the ordered synthesis and mobilization of cardiac glycogen, we have selectively monitored the NMR properties of 13C-labeled glycogen synthesized early in the perfusion during further glycogen synthesis from a second, differently labeled substrate. During synthesis from the second labeled glucose monomer, the glycogen resonance from the first label decreased in integrated intensity and increased in line width.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types