Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jun 25:6:11.
doi: 10.1186/s13293-015-0029-7. eCollection 2015.

Sex differences of leukocytes DNA methylation adjusted for estimated cellular proportions

Affiliations

Sex differences of leukocytes DNA methylation adjusted for estimated cellular proportions

Masatoshi Inoshita et al. Biol Sex Differ. .

Abstract

Background: DNA methylation, which is most frequently the transference of a methyl group to the 5-carbon position of the cytosine in a CpG dinucleotide, plays an important role in both normal development and diseases. To date, several genome-wide methylome studies have revealed sex-biased DNA methylation, yet no studies have investigated sex differences in DNA methylation by taking into account cellular heterogeneity. The aim of the present study was to investigate sex-biased DNA methylation on the autosomes in human blood by adjusting for estimated cellular proportions because cell-type proportions may vary by sex.

Methods: We performed a genome-wide DNA methylation profiling of the peripheral leukocytes in two sets of samples, a discovery set (49 males and 44 females) and a replication set (14 males and 10 females) using Infinium HumanMethylation450 BeadChips for 485,764 CpG dinucleotides and then examined the effect of sex on DNA methylation with a multiple linear regression analysis after adjusting for age, the estimated 6 cell-type proportions, and the covariates identified in a surrogate variable analysis.

Results: We identified differential DNA methylation between males and females at 292 autosomal CpG site loci in the discovery set (Bonferroni-adjusted p < 0.05). Of these 292 CpG sites, significant sex differences were also observed at 98 sites in the replication set (p < 0.05).

Conclusions: These findings provided further evidence that DNA methylation may play a role in the differentiation or maintenance of sexual dimorphisms. Our methylome mapping of the effects of sex may be useful to understanding the molecular mechanism involved in both normal development and diseases.

Keywords: Blood; Cell heterogeneity; DNA methylation; Epigenetics; Leukocyte; Microarray; Sex.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Average estimated cellular proportions of male and female groups. The y axis is each of average estimated cellular proportions of CD8 + T cell, CD4 + T cell, CD56 + NK cell, CD19 + B cell, CD14 + monocyte, and granulocyte. Significant differences between the two groups were observed in 2 cell types (CD8 + T cell and CD56 + NK cell) (Welch’s t test p < 0.05)
Fig. 2
Fig. 2
Volcano plots of differentially methylated CpG sites between males and females. This volcano plot shows the result of genome-wide DNA methylation differences between 49 males and 44 females after adjusting for the estimated cell mixture proportions. Average beta difference (males-females) is shown on the x axis. Log10-converted p value is shown on the y-axis. CpG loci that showed a p value of less than 5 % after Bonferroni correction are colored red. Significant sex differences in DNA methylation were observed at 292 CpG sites (p < 1.44 × 10−7)
Fig. 3
Fig. 3
Quantile-quantile (Q-Q) plot of DNA methylation between males and females. The x axis is the expected −log10P value, and the y axis is the observed −log10P value. This Q-Q plot shows a deviation of the observed from the expected, providing evidence of DNA methylation differences between males and females at numerous CpG sites

References

    1. Morgan CP, Bale TL. Sex differences in microRNA regulation of gene expression: no smoke, just miRs. Biol Sex Differ. 2012;3(1):22. doi: 10.1186/2042-6410-3-22. - DOI - PMC - PubMed
    1. Vawter MP, Evans S, Choudary P, Tomita H, Meador-Woodruff J, Molnar M, et al. Gender-specific gene expression in post-mortem human brain: localization to sex chromosomes. Neuropsychopharmacology. 2004;29(2):373–84. doi: 10.1038/sj.npp.1300337. - DOI - PMC - PubMed
    1. Weickert CS, Elashoff M, Richards AB, Sinclair D, Bahn S, Paabo S, et al. Transcriptome analysis of male–female differences in prefrontal cortical development. Mol Psychiatry. 2009;14(6):558–61. doi: 10.1038/mp.2009.5. - DOI - PubMed
    1. Xu H, Wang F, Liu Y, Yu Y, Gelernter J, Zhang H. Sex-biased methylome and transcriptome in human prefrontal cortex. Hum Mol Genet. 2014;23(5):1260–70. doi: 10.1093/hmg/ddt516. - DOI - PMC - PubMed
    1. Gut P, Verdin E. The nexus of chromatin regulation and intermediary metabolism. Nature. 2013;502(7472):489–98. doi: 10.1038/nature12752. - DOI - PubMed

LinkOut - more resources