Genetically encoded voltage indicators for large scale cortical imaging come of age
- PMID: 26115448
- DOI: 10.1016/j.cbpa.2015.06.006
Genetically encoded voltage indicators for large scale cortical imaging come of age
Abstract
Electrical signals are fundamental to cellular sensing, communication and motility. In the nervous system, information is represented as receptor, synaptic and action potentials. Understanding how brain functions emerge from these electrical signals is one of the ultimate challenges in neuroscience and requires a methodology to monitor membrane voltage transients from large numbers of cells at high spatio-temporal resolution. Optical voltage imaging holds longstanding promises to achieve this, and has gained a fresh powerful momentum with the development of genetically encoded voltage indicators (GEVIs). With a focus on neuroimaging studies on intact mouse brains, we highlight recent advances in this field.
Copyright © 2015 Elsevier Ltd. All rights reserved.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
