Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jun 30:13:207.
doi: 10.1186/s12967-015-0571-4.

The effect of prolonged of warm ischaemic injury on renal function in an experimental ex vivo normothermic perfusion system

Affiliations

The effect of prolonged of warm ischaemic injury on renal function in an experimental ex vivo normothermic perfusion system

Sarah A Hosgood et al. J Transl Med. .

Abstract

Background: Donation after circulatory death (DCD) kidney transplants inevitably sustain a degree of warm ischaemic injury, which is manifested clinically as delayed graft function. The aim of this study was to define the effects of prolonged periods of warm ischaemic injury on renal function in a normothermic haemoperfused kidney model.

Methods: Porcine kidneys were subjected to 15, 60, 90 (n = 6 per group) and 120 min (n = 4) of in situ warm ischaemia (WI) and then retrieved, flushed with cold preservation fluid and stored in ice for 2 h. Kidneys then underwent 3 h of normothermic reperfusion with a whole blood-based perfusate using an ex vivo circuit developed from clinical grade cardiopulmonary bypass technology.

Results: Creatinine clearance, urine output and fractional excretion of sodium deteriorated sequentially with increasing warm time. Renal function was severely compromised after 90 or 120 min of WI but haemodynamic, metabolic and histological parameters demonstrated the viability of kidneys subjected to prolonged warm ischaemia.

Conclusions: Isolated kidney perfusion using a warm, oxygenated, red cell-based perfusate allows an accurate ex vivo assessment of the potential for recovery from warm ischaemic injury. Prolonged renal warm ischaemic injury caused a severe decrement in renal function but was not associated with tissue necrosis.

PubMed Disclaimer

Figures

Figure 1
Figure 1
a Mean renal blood flow during 3 h of reperfusion. Kidneys were subjected to 15, 60, 90 and 120 min of warm ischaemia (WI) followed by 2 h of static cold storage (SCS). *P < 0.05 15 min versus 60, 90 and 120 min groups. b Area under the curve renal blood flow. Kidneys were subjected to 15, 60, 90 and 120 min of warm ischaemia (WI) followed by 2 h of static cold storage (SCS). P = 0.084.
Figure 2
Figure 2
Mean serum creatinine levels during 3 h. Kidneys were subjected to 15, 60, 90 and 120 min of warm ischaemia (WI) followed by 2 h of static cold storage (SCS). *P = 0.004, 0.001, 15 min versus 90 and 120 min groups at 2 and 3 h of reperfusion, respectively.
Figure 3
Figure 3
Mean creatinine clearance at 1, 2 and 3 h of reperfusion. Kidneys were subjected to 15, 60, 90 and 120 min of warm ischaemia (WI) followed by 2 h of static cold storage (SCS). *P < 0.05 15 min versus 90 and 120 min.
Figure 4
Figure 4
Mean fractional excretion of sodium at 1, 2 and 3 h of reperfusion. Kidneys were subjected to 15, 60, 90 and 120 min of warm ischaemia (WI) followed by 2 h of static cold storage (SCS). * P = 0.003 15 min versus 90 and 120 min. **P = 0.005, 0.007 15 min versus 120 min group, respectively.
Figure 5
Figure 5
Mean urine output at 1, 2 and 3 h or reperfusion. Kidneys were subjected to 15, 60, 90 and 120 min of warm ischaemia (WI) followed by 2 h of static cold storage (SCS). *P < 0.001 15 min versus 60, 90 and 120 min. **P = 0.002, 0.001 15 min versus 90 and 120 min, respectively.

References

    1. Johnson RJ, Bradbury LL, Martin K, Neuberger J, UK Transplant Registry (2004) Organ donation and transplantation in the UK-the last decade: a report from the UK national transplant registry. Transplantation 97(Suppl 1):S1–S27 - PubMed
    1. Summers DM, Johnson RJ, Allen J, Fuggle SV, Collett D, Watson CJ, et al. Analysis of factors that affect outcome after transplantation of kidneys donated after cardiac death in the UK: a cohort study. Lancet. 2010;376:1303–1311. doi: 10.1016/S0140-6736(10)60827-6. - DOI - PubMed
    1. https://nhsbtmediaservices.blob.core.windows.net/organ-donationassets/pd.... Accessed 15 May 2015
    1. Barlow AD, Metcalfe MS, Johari Y, Elwell R, Veitch PS, Nicholson ML. Case-matched comparison of long-term results of non-heart beating and heart-beating donor renal transplants. Br J Surg. 2009;96:685–691. doi: 10.1002/bjs.6607. - DOI - PubMed
    1. Hoogland ER, Snoeijs MG, Winkens B, Christaans MH, va Heurn LW. Kidney transplantation from donors after cardiac death: uncontrolled versus controlled donation. Am J Transplant. 2011;11:1427–1434. doi: 10.1111/j.1600-6143.2011.03562.x. - DOI - PubMed

Publication types